Citation: | WANG Qinsheng, YANG Yongqiang, WANG Ling, ZHANG Yan. Surface Morphology Control and Surface Enhanced Raman Scattering Effect of GO/Au/Ag Composite[J]. Journal of Shanghai University of Engineering Science, 2020, 34(4): 314-319. |
[1] |
FLEISCHMANN M, HENDRA P J, MCQUILLAN A J. Raman spectra of pyridine adsorbed at a silver electrode[J] . Chemical Physics Letters,1974,26(2):163 − 166.
|
[2] |
LE RU E, BLACKIE E J, MEYER M, et al. Surface enhanced Raman scattering enhancement factors: a comprehensive study[J] . Journal of Physical Chemistry C,2007,111(37):13794 − 13803.
|
[3] |
WANG K Q, SUN D W, PU H B, et al. Surface-enhanced Raman scattering of core-shell Au@Ag nanoparticles aggregates for rapid detection of difenoconazole in grapes[J] . Talanta,2019,191:449 − 456.
|
[4] |
D’ANDREA C, FAZIO B, GUCCIARDI P G, et al. SERS enhancement and field confinement in nanosensors based on self-organized gold nanowires produced by ion-beam sputtering[J] . Journal of Physical Chemistry C,2014,118(118):8571 − 8580.
|
[5] |
GUO P Z, SIKDAR D, HUANG X P, et al. Plasmonic core-shell nanoparticles for SERS detection of the pesticide thiram: size- and shape-dependent Raman enhancement[J] . Nanoscale,2015,7(7):2862 − 2868.
|
[6] |
MILLO D, BONIFACIO A, MONCELLI M R, et al. Characterization of hybrid bilayer membranes on silver electrodes as biocompatible SERS substrates to study membrane–protein interactions[J] . Colloids and Surfaces B: Biointerfaces,2010,81(1):212 − 216.
|
[7] |
BAI T T, SUN J F, CHE R C, et al. Controllable preparation of core–shell Au–Ag nanoshuttles with improved refractive index sensitivity and SERS activity[J] . ACS Applied Materials & Interfaces,2014,6(6):3331 − 3340.
|
[8] |
MA P Y, LIANG F H, DIAO Q P, et al. Selective and sensitive SERS sensor for detection of Hg2+ in environmental water base on rhodamine-bonded and amino group functionalized SiO2-coated Au-Ag core-shell nanorods[J] . RSC Advances,2015,5(41):32168 − 32174.
|
[9] |
HAN X X, CHEN L,KUHLMANN U, et al. Magnetic titanium dioxide nanocomposites for surface-enhanced resonance Raman spectroscopic determination and degradation of toxic anilines and phenols[J] . Angewandte Chemie International Edition,2014,53(53):2481 − 2484.
|
[10] |
ZHANG J L,YANG H J,SHEN G X, et al. Reduction of graphene oxide via L-ascorbic acid[J] . Chemical Communications,2010,47(7):1112 − 150.
|
[11] |
ALEKSANDRA W, KAMAT P V. Reduced graphene oxide and porphyrin. An interactive affair in 2-D[J] . ACS Nano,2010,4(11):6697 − 6706.
|
[12] |
EMERY J D, WANG Q H, ZARROUATI M, et al. Structural analysis of PTCDA monolayers on epitaxial graphene with ultra-high vacuum scanning tunneling microscopy and high-resolution X-ray reflectivity[J] . Surface Science,2011,605(17-18):1685 − 1693.
|
[13] |
XIE L M, LING X, FANG Y, et al. Graphene as a substrate to suppress fluorescence in resonance Raman spectroscopy[J] . Journal of the American Chemical Society,2009,131(29):9890 − 9891.
|
[14] |
OTTO A. The ‘chemical’ (electronic) contribution to surface‐enhanced Raman scattering[J] . Journal of Raman Spectroscopy,2005,36(36):497 − 509.
|
[15] |
ZHANG M J, LENG Y D, HUANG J, et al. Surface-enhanced Raman scattering of dipolar molecules by the graphene Fermi surface modulation with different dipole moments[J] . Applied Surface Science,2017,(425):654 − 662.
|
[16] |
JUNG N, CROWTHER A C, KIM N, et al. Raman enhancement on graphene: adsorbed and intercalated molecular species[J] . ACS Nano,2010,4(11):7005 − 7013.
|
[17] |
WANG L, ZHANG Y, YANG Y Q,et al. Strong dependence of surface enhanced Raman scattering on structure of graphene oxide film[J] . Materials,2018,11(7):1199.
|
[18] |
ZHENG X L, PENG Y S, YANG Y, et al. Hydrothermal reduction of graphene oxide; effect on surface-enhanced Raman scattering[J] . Journal of Raman Spectroscopy,2017,48(48):97 − 103.
|
[19] |
YANG H P, HU H L, NI Z H, et al. Comparison of surface-enhanced Raman scattering on graphene oxide, reduced graphene oxide and graphene surfaces[J] . Carbon,2013,(62):422 − 429.
|
[20] |
YANG Y Q, WANG L, WANG Q S, et al. Synthesis of GO/Au/Ag nanocomposite with excellent surface enhanced Raman scattering effect[J] . Journal of Physics. Conference Series,2020,1622(1):012067.
|
[21] |
HUMMERS W S, OFFEMAN R E. Preparation of graphitic oxide[J] . Journal of the American Chemical Society,1958,80(6):1339.
|
[22] |
ROBINSON J T, TABAKMAN S M, LIANG Y Y, et al. Ultrasmall reduced graphene oxide with high near-infrared absorbance for photothermal therapy[J] . Journal of the American Chemical Society,2011,133(133):6825 − 6831.
|
[23] |
王玲, 张艳, 张婧, 等. Au@石墨烯量子点复合材料的制备及表面增强拉曼散射应用[J] . 新型炭材料,2019,34(6):606 − 610.
|
[24] |
HIROYUKI W, NORIHIKO H, YASUSHI I, et al. DFT vibrational calculations of rhodamine 6G adsorbed on silver: analysis of tip-enhanced Raman spectroscopy[J] . Journal of Physical Chemistry B,2005(109):5012 − 5020.
|