Citation: | LIU Wenyi, HU Jiwen, ZHAO Dandan. Finite Element Analysis of Dynamic Behavior of Microbubble with Different Wall Shapes[J]. Journal of Shanghai University of Engineering Science, 2021, 35(1): 82-87. |
[1] |
刘晓晖, 任艳, 韩婷婷, 等. 超声空化联合微泡造影剂增强肿瘤化疗的初步应用[J] . 临床医药文献电子杂志,2020,7(37):54.
|
[2] |
MOVAHED P, KREIDER W, MAXWELL A D, et al. Cavitation-induced damage of soft materials by focused ultrasound bursts: A fracture-based bubble dynamics model[J] . Journal of the Acoustical Society of America,2016,140(2):1374 − 1386. doi: 10.1121/1.4961364
|
[3] |
江行军, 牛传筱, 吴宇鹏, 等. 低频超声场中微血管内微泡动力学仿真研究[J] . 中国医学物理学杂志,2017,34(2):182 − 187.
|
[4] |
ZUDIN Y B. Analog of the Rayleigh equation for the problem of bubble dynamics in a tube[J] . Journal of Engineering Physics and Thermophysics,1992,63:672 − 675. doi: 10.1007/BF00853959
|
[5] |
姜学平, 程茜, 钱梦騄. 刚性边界附近微泡运动特性的计算及数值模拟[C]//2008年全国声学学术会议论文集, 上海: 中国声学学会, 2008.
|
[6] |
邱晓晖, 沈圆圆, 钱建庭, 等. 刚性微管内微泡动力学行为的有限元数值分析[J] . 生物医学工程学杂志,2011,28(5):911 − 915.
|
[7] |
JEREMY E, PÁLFI KATALIN, LUISE D F, et al. 3D imaging and quantitative analysis of vascular networks: A comparison of ultramicroscopy and micro-computed tomography[J] . Theranostics,2018,8(8):2117 − 2133. doi: 10.7150/thno.22610
|
[8] |
JOHNSEN E, COLONIUS T. Shock-induced collapse of a gas bubble in shockwave lithotripsy[J] . Journal of the Acoustical Society of America,2008,124(4):2011 − 2020. doi: 10.1121/1.2973229
|
[9] |
盛常睿, 陈赛君, 严利明, 等. 注射用六氟化硫微泡造影剂剂量与机械指数对孕鼠胎盘超声造影成像的影响[J] . 中华妇幼临床医学杂志(电子版),2020,16(3):329 − 334.
|
[10] |
QIN S P, FERRARA K W. Acoustic response of compliable microvessels containing ultrasound contrast agents[J] . Physics in Medicine & Biology,2006,51(20):5065 − 5088.
|
[11] |
WEISS H L. Mechanical damage from cavitation in high intensity focused ultrasound accelerated thrombolysis[D]. Berkeley: University of California, 2012.
|
[12] |
姚文瑛, 许松林, 吴云, 等. 基于计算流体力学的血液和血栓通过静脉瓣时流动分析[J] . 大连理工大学学报,2020,60(4):339 − 348.
|
[13] |
蔡晨亮, 屠娟, 郭霞生, 等. 包膜黏弹特性及声驱动参数对相互作用微泡动力学行为的影响[J] . 声学学报,2019,44(4):772 − 779.
|