Citation: | LIU Xinyue, GAO Feng, SHU Shihu. Effect of Copper and Nickel Ions on Aerobic Granular Sludge Treatment and Improvement Strategy[J]. Journal of Shanghai University of Engineering Science, 2020, 34(4): 331-336. |
[1] |
PRONK M, de KREUK M K, de BRUIN B, et al. Full scale performance of the aerobic granular sludge process for sewage treatment[J] . Water Research, 2015, 84: 207-217.
|
[2] |
ROMOS C, SUÁREZ-OJEDA M E, Carrera J. Long-term impact of salinity on the performance and microbial population of an aerobic granular reactor treating a high-strength aromatic wastewater[J] . Bioresource Technology,2015,198:844 − 851. doi: 10.1016/j.biortech.2015.09.084
|
[3] |
赫国胜. 超滤技术在某电子厂镀铜漂洗废水回用处理中的应用研究[D]. 苏州: 苏州科技大学, 2017.
|
[4] |
陈健俊. 含镍络合废水处理技术研究[D]. 上海: 华东理工大学, 2015.
|
[5] |
胡怡杉. 微量铜离子对SBR中除磷菌多样性影响的研究[D]. 天津: 天津大学, 2012.
|
[6] |
GIKAS P. Single and combined effects of nickel (Ni(Ⅱ)) and cobalt (Co(Ⅱ)) ions on activated sludge and on other aerobic microorganisms:A review[J] . Journal of Hazardous Materials,2008,159(2/3):187 − 203.
|
[7] |
SIRIANUNTAPIBOON S, HONGSRISUWAN T. Removal of Zn2+ and Cu2+ by a sequencing batch reactor (SBR) system[J] . Bioresource Technology,2007,98(4):808 − 818. doi: 10.1016/j.biortech.2006.03.022
|
[8] |
李健中. 重金属对生物脱氮除磷系统中微生物的毒性影响[D]. 广州: 广州大学, 2010.
|
[9] |
李冰, 李玉瑛. 镍、铬对活性污泥真实产率的影响[J] . 环境污染与防治,2007(2):151 − 154. doi: 10.3969/j.issn.1001-3865.2007.02.019
|
[10] |
CHATTERJEE S, SIVAREDDY I, DE S. Adsorptive removal of potentially toxic metals (cadmium, copper, nickel and zinc) by chemically treated laterite: Single and multicomponent batch and column study[J] . Journal of Environmental Chemical Engineering,2017,5(4):3273 − 3289. doi: 10.1016/j.jece.2017.06.029
|
[11] |
MURRAY A, ÖRMECI B. Use of polymeric sub-micron ion-exchange resins for removal of lead, copper, zinc, and nickel from natural waters[J] . Journal of environmental sciences,2019,75:247 − 254. doi: 10.1016/j.jes.2018.03.035
|
[12] |
DERLON N, WAGNER J, da COSTA R H R, et al. Formation of aerobic granules for the treatment of real and low-strength municipal wastewater using a sequencing batch reactor operated at constant volume[J] . Water Research,2016,105:341 − 350. doi: 10.1016/j.watres.2016.09.007
|
[13] |
BARROS A R M, ROLLEMBERG S L D S, de CARVALHO C D A, et al. Effect of calcium addition on the formation and maintenance of aerobic granular sludge (AGS) in simultaneous fill/draw mode sequencing batch reactors (SBRs)[J] . Journal of Environmental Management,2020,255:109850. doi: 10.1016/j.jenvman.2019.109850
|
[14] |
HE Z F, WEI Z, ZHANG Q Y, et al. Metal oxyanion removal from wastewater using manganese-oxidizing aerobic granular sludge[J] . Chemosphere,2019,236:124353. doi: 10.1016/j.chemosphere.2019.124353
|
[15] |
TAY J H, LIU Q S, LIU Y. Microscopic observation of aerobic granulation in sequential aerobic sludge blanket reactor[J] . Journal of Applied Microbiology,2001,91(1):168 − 175. doi: 10.1046/j.1365-2672.2001.01374.x
|
[16] |
沈祥信. 好氧颗粒污泥快速培养及其吸附重金属的研究[D]. 长沙: 湖南大学, 2007.
|
[17] |
XU H, LIU Y, TAY J H. Effect of pH on nickel biosorption by aerobic granular sludge[J] . Bioresource Technology,2006,97(3):359 − 363. doi: 10.1016/j.biortech.2005.03.011
|
[18] |
IORHEMEN O T, HAMZA R A, ZAGHLOUL M S, et al. Aerobic granular sludge membrane bioreactor (AGMBR): Extracellular polymeric substances (EPS) analysis[J] . Water Research,2019,156:305 − 314. doi: 10.1016/j.watres.2019.03.020
|