Volume 35 Issue 3
Sep.  2021
Turn off MathJax
Article Contents
YU Hongyan, SHIN Eunwoo, MEN Yong. Ethanol conversion over La2O2CO3/ZnO catalysts prepared by two methods: Effect of macroporous structure and basic sites[J]. Journal of Shanghai University of Engineering Science, 2021, 35(3): 253-258.
Citation: YU Hongyan, SHIN Eunwoo, MEN Yong. Ethanol conversion over La2O2CO3/ZnO catalysts prepared by two methods: Effect of macroporous structure and basic sites[J]. Journal of Shanghai University of Engineering Science, 2021, 35(3): 253-258.

Ethanol conversion over La2O2CO3/ZnO catalysts prepared by two methods: Effect of macroporous structure and basic sites

  • Received Date: 2020-12-28
  • Publish Date: 2021-09-30
  • In this work, we prepared the La2O2CO3/ZnO catalysts by two different methods-co-precipitation and ethylene glycol combustion method, whose catalytic performance of the dehydrogenation of ethanol to acetaldehyde as well as materials’ properties related to the catalytic behavior through FE−SEM, HR−TEM, FT−IR, XRD, N2 adsorption/ desorption technique were investigated. The catalyst synthesis method had greatly influenced the morphology and performance, with materials prepared through solution combustion method better in terms of ethanol conversion resulted from the macroporous structure. Characterization results based on CO2−TPD revealed that catalyst synthesized through co-precipitation or solution combustion method allowed correlation of acetaldehyde selectivity with basicity.
  • loading
  • [1]
    GONZALEZ-GARCIA S, LOU L, MOREIRA M T, et al. Life cycle assessment of hemp hurds use in second generation ethanol production[J] . Biomass & Bioenergy,2012,36:268 − 279.
    [2]
    JOHN R P, ANISHA G S, NAMPOOTHIRI K M, et al. Micro and macroalgal biomass: A renewable source for bioethanol[J] . Bioresource Technology,2011,102(1):186 − 193. doi: 10.1016/j.biortech.2010.06.139
    [3]
    GHASEMZADEH K, JALILNEJAD E, BASILE A. 3-Production of bioalcohol and biomethane[J] . Bioenergy Systems for the Future,2017:61 − 86.
    [4]
    PAMPARARO G, GARBARINO G, RIANI P, et al. A study of ethanol dehydrogenation to acetaldehyde over supported copper catalysts: catalytic activity, deactivation and regeneration[J] . Applied Catalysis A: General,2020, 602:117710.
    [5]
    MOSTROU S, SIPŐCZ T, NAGL A, et al. Catalytic oxidation of aqueous bioethanol: An efficient upgrade from batch to flow[J] . Reaction Chemistry & Engineering,2018,3(5):781 − 789.
    [6]
    HAGEMEYER H J. Kirk-Othmer Encyclopedia of Chemical Technology[M]. 5th Edition. Hoboken: John Wiley & Sons, 2002: 564 − 575.
    [7]
    GUAN Y, HENSEN E J M. Ethanol dehydrogenation by gold catalysts: The effect of the gold particle size and the presence of oxygen[J] . Applied Catalysis A: General,2009,361(1/2):49 − 56.
    [8]
    CHANG F W, YANG H C, ROSELIN L S, et al. Ethanol dehydrogenation over copper catalysts on rice husk ash prepared by ion exchange[J] . Applied Catalysis A General,2006,304:30 − 39. doi: 10.1016/j.apcata.2006.02.017
    [9]
    LI S X, MEN Y, WANG J G, et al. Morphological control of inverted MgO-SiO2 composite catalysts for efficient conversion of ethanol to 1, 3-butadiene[J] . Applied Catalysis A General,2019,577:1 − 9. doi: 10.1016/j.apcata.2019.03.007
    [10]
    WANG X F, MEN Y, WANG J G, et al. The influence of zinc loadings on the selectivity control of bio-ethanol transformation over MgO-SiO2 catalysts[J]. Applied Catalysis A: General, 2020, 598: 117565. DOI: 10.1016/j.apcata.2020.117565
    [11]
    SATO A G, VOLANTI D P, FREITAS I, et al. Site-selective ethanol conversion over supported copper catalysts[J] . Catalysis Communications,2012,26:122 − 126. doi: 10.1016/j.catcom.2012.05.008
    [12]
    FREITAS I C, DAMYANOVA S, OLIVEIRA D C, et al. Effect of Cu content on the surface and catalytic properties of Cu/ZrO2 catalyst for ethanol dehydrogenation[J] . Journal of Molecular Catalysis A: Chemical,2014,381(1):26 − 37.
    [13]
    DEWILDE J F, CZOPINSKI C J, BHAN A. Ethanol dehydration and dehydrogenation on γ-Al2O3: Mechanism of acetaldehyde formation[J] . ACS Catalysis,2014,4(12):4425 − 4433. doi: 10.1021/cs501239x
    [14]
    SKINNER M J, MICHOR E L, FAN W, et al. Ethanol dehydration to ethylene in a stratified autothermal millisecond reactor[J] . ChemSusChem,2011,4(8):1151 − 1156. doi: 10.1002/cssc.201100026
    [15]
    AUTTHANIT C, JONGSOMJIT B. Production of Ethylene through Ethanol Dehydration on SBA-15 Catalysts Synthesized by Sol-gel and One-step Hydrothermal Methods[J] . Journal of oleo science,2018,67(2):235 − 243. doi: 10.5650/jos.ess17167
    [16]
    LA-SALVIA N, LOVON-QUINTANA JJ, VALENCA GP. Vapor-Phase Catalytic Conversion of Ethanol into 1, 3-Butadiene on Cr-Ba/MCM-41 Catalysts[J] . Brazilian Journal of Chemical Engineering,2015,32(2):489 − 500. doi: 10.1590/0104-6632.20150322s00003039
    [17]
    DING D G, LU W B, XIONG Y, et al. Facile synthesis of La2O2CO3 nanoparticle films and Its CO2 sensing properties and mechanisms[J] . Applied Surface Science,2017,426 (31):725 − 733. doi: 10.1016/j.apsusc.2017.07.126
    [18]
    PARK C Y, NGUYEN-PHU H, SHIN E W. Glycerol carbonation with CO2 and La2O2CO3/ZnO catalysts prepared by two different methods: Preferred reaction route depending on crystalline structure[J] . Molecular Catalysis,2017,435:99 − 109. doi: 10.1016/j.mcat.2017.03.025
    [19]
    LI H G, GAO D Z, GAO P, et al. The synthesis of glycerol carbonate from glycerol and CO2 over La2O2CO3-ZnO catalysts[J] . Catalysis Science & Technology,2013,3:2801 − 2814.
    [20]
    LI H, Xi J, Lei L, et al. Synthesis of glycerol carbonate by direct carbonylation of glycerol with CO2 over solid catalysts derived from Zn/Al/La and Zn/Al/La/M (M = Li, Mg and Zr) hydrotalcites[J] . Catalysis Science & Technology,2015,5:989 − 996.
    [21]
    JIN L, ZHANG Y, DOMBROWSKI J P, et al. ZnO/La2O2CO3 layered composite: A new heterogeneous catalyst for the efficient ultra-fast microwave biofuel production[J] . Applied Catalysis B Environmental,2011,103(1/2):200 − 205. doi: 10.1016/j.apcatb.2011.01.027
    [22]
    ZHANG G, ZHAO Z, LIU J, et al. Macroporous perovskite-type complex oxide catalysts of La1– xKxCo1– yFeyO3 for diesel soot combustion[J] . Journal of Rare Earths,2009,27(6):955 − 960. doi: 10.1016/S1002-0721(08)60369-5
    [23]
    YU H Y, MEN Y, SHIN E W. Structural properties of disordered macroporous La2O2CO3/ZnO materials prepared by a solution combustion method[J] . Korean Journal of Chemical Engineering,2019,36(4):522 − 528. doi: 10.1007/s11814-019-0239-5
    [24]
    IRUSTA S, CORNAGLIA L M, LOM BA RDO E A. Effects of rhodium and platinum on the reactivity of lanthanum phases[J] . Materials Chemistry & Physics,2004,86(2/3):440 − 447.
    [25]
    TURCOTTE R P, SAWYER J O, EYRING L R. On the rare earth dioxymonocarbonates and their decomposition[J] . Inorganic Chemistry,1969,8(2):238 − 246. doi: 10.1021/ic50072a012
    [26]
    LEVAN T, CHE M, TATIBOUET J M, et al. Infrared study of the formation and stability of La2O2CO3 during the oxidative coupling of methane on La2O3[J] . Journal of Catalysis,1993,142(1):18 − 26. doi: 10.1006/jcat.1993.1185
    [27]
    NI J, CHEN L, LIN J, et al. High performance of Mg-La mixed oxides supported Ni catalysts for dry reforming of methane: The effect of crystal structure[J] . International Journal of Hydrogen Energy,2013,38(31):13631 − 13642. doi: 10.1016/j.ijhydene.2013.08.041
    [28]
    PAKHARE D, SCHWARTZ V, ABDELSAYED V, et al. Kinetic and mechanistic study of dry (CO2) reforming of methane over ROOH-substituted La2Zr2O7 pyrochlores[J] . Journal of Catalysis,2014,316:78 − 92. doi: 10.1016/j.jcat.2014.04.023
    [29]
    KVISLE S, AGUERO A, SNEEDEN R. Transformation of ethanol into 1, 3-butadiene over magnesium oxide/silica catalysts[J] . Applied Catalysis,1988,43(1):117 − 131. doi: 10.1016/S0166-9834(00)80905-7
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)

    Article Metrics

    Article views (377) PDF downloads(339) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return