Volume 34 Issue 4
Dec.  2020
Turn off MathJax
Article Contents
WU Yilan, LIAO Aihua, DING Yaqi. Evaluation of Rolling Bearing Performance Degradation Based on PCA-SVDD[J]. Journal of Shanghai University of Engineering Science, 2020, 34(4): 358-363.
Citation: WU Yilan, LIAO Aihua, DING Yaqi. Evaluation of Rolling Bearing Performance Degradation Based on PCA-SVDD[J]. Journal of Shanghai University of Engineering Science, 2020, 34(4): 358-363.

Evaluation of Rolling Bearing Performance Degradation Based on PCA-SVDD

  • Received Date: 2020-07-24
  • Publish Date: 2020-12-30
  • Aiming at the problem that it is difficult to detect the early weak faults of rolling bearing in time, a rolling bearing performance degradation evaluation model based on principal component analysis (PCA) and support vector data description (SVDD) was proposed. PCA method was used to weighted fusion of the characteristic indexes of rolling bearing vibration signal in time domain and frequency domain, and a comprehensive characteristic index which can effectively and comprehensively describe the operation status of rolling bearing was constructed. The comprehensive characteristic indexes of normal samples were input into the SVDD model to complete the construction of evaluation model. The occurrence time of minor fault was determined by setting health alarm threshold, and the whole life test data of the rolling bearing was used for verification. The results show that compared with the SVDD model that the kurtosis index and the root mean square value as the characteristic index input, the evaluation model can detect the occurrence of early weak faults of rolling bearing earlier, and can describe the overall degradation of rolling bearing more accurately.
  • loading
  • [1]
    LOUTAS T H, ROULIAS D, GEORGOULAS G. Remaining useful life estimation in rolling bearings utilizing data-driven probabilistic e-support vectors regression[J] . IEEE Transactions on Reliability,2013,62(4):821 − 832. doi: 10.1109/TR.2013.2285318
    [2]
    李超, 郭瑜. 基于SK等指标和SVM的滚动轴承性能退化评估研究[J] . 电子科技,2020,33(1):6 − 12.
    [3]
    王恒, 周易文, 季云, 等. 结合狄利克雷过程和连续隐马尔科夫模型的滚动轴承性能退化评估[J] . 吉林大学学报(工学版),2019,49(1):117 − 123.
    [4]
    任利娟. 滚动轴承性能退化评估与剩余寿命预测[D]. 济南: 山东大学, 2019.
    [5]
    杨潇谊, 吴建德, 马军. 基于散布熵和余弦欧氏距离的滚动轴承性能退化评估方法[J] . 电子测量与仪器学报,2020,34(7):15 − 24.
    [6]
    TAX D M J, DUIN R P W. Support vector data description[J] . Machine Learning,2004(54):45 − 66.
    [7]
    李勇发, 左小清, 杨芳, 等. 基于小波奇异谱及SVDD的轴承故障检测方法[J] . 轴承,2016(8):46 − 49. doi: 10.3969/j.issn.1000-3762.2016.08.014
    [8]
    王发令, 周建民, 张臣臣, 等. 基于AR能量比和SVDD的滚动轴承性能退化评估[J] . 机床与液压,2020,48(12):103 − 111. doi: 10.3969/j.issn.1001-3881.2020.12.015
    [9]
    王立祥, 廖爱华, 丁亚琦. 基于比例故障率模型的转向架牵引电机滚动轴承可靠性评估[J] . 测控技术,2018,37(1):14 − 18. doi: 10.3969/j.issn.1000-8829.2018.01.004
    [10]
    孟文俊, 张四聪, 淡紫嫣, 等. 滚动轴承寿命动态预测新方法[J] . 振动. 测试与诊断,2019,39(3):652 − 658; 678.
    [11]
    郭伟超, 赵怀山, 李成, 等. 基于小波包能量谱与主成分分析的轴承故障特征增强诊断方法[J] . 兵工学报,2019,40(11):2370 − 2377. doi: 10.3969/j.issn.1000-1093.2019.11.022
    [12]
    LIN T, CHEN G, OUYANG W L, et al. Hyper-Spherical distance discrimination: A novel data description method for aero-engine rolling bearing fault detection[J] . Mechanical Systems & Signal Processing,2018,109:330 − 351.
    [13]
    WANG B X, PAN H X, YANG W. Robust bearing degradation assessment method based on improved CVA[J]. IET Science, Measurement & Technology, 2017, 11(5): 637-645.
    [14]
    肖顺根, 马善红, 宋萌萌, 等. 基于 EEMD 和 PCA 滚动轴承性能退化指标的提取方法[J] . 江南大学学报(自然科学版),2015,14(5):572 − 579.
    [15]
    QIU H, LEE J, LIN J, et al. Wavelet filter-based weak signature detection method and its application on rolling element bearing prognostics[J] . Journal of Sound and Vibration,2006,289(4/5):1066 − 1090.
    [16]
    杨国安. 滚动轴承故障诊断实用技术[M]. 北京: 中国石化出版社, 2012
    [17]
    田福庆, 罗荣, 贾兰俊, 等. 机械故障非平稳特征提取方法及其应用[M]. 北京: 国防工业出版社, 2014.
    [18]
    徐清瑶. 基于支持向量数据描述的滚动轴承性能退化评估[D]. 南昌: 华东交通大学, 2015.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)

    Article Metrics

    Article views (351) PDF downloads(321) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return