Citation: | QIU Wenkai, WANG Keyong. Hybrid Fundamental-Solution-Based FEM for Heat Conduction Problems in Orthotropic Materials[J]. Journal of Shanghai University of Engineering Science, 2020, 34(4): 305-313. |
[1] |
WANG H, QIN Q H. Hybrid FEM with fundamental solutions as trial functions for heat conduction simulation[J] . Acta Mechanica Solida Sinica,2009,22(5):487 − 498.
|
[2] |
GAO X W. A meshless BEM for isotropic heat conduction problems with heat generation and spatially varying conductivity[J] . International Journal for Numerical Methods in Engineering,2006,66(9):1411 − 1431.
|
[3] |
KASSAB A J, DIVO E. A generalized boundary integral equation for isotropic heat conduction with spatially varying thermal conductivity[J] . Engineering Analysis with Boundary Elements,1996,18(4):273 − 286.
|
[4] |
WANG Z, YAN P, GUO Z, et al. BEM/FDM conjugate heat transfer analysis of a two-dimensional air-cooled turbine blade boundary layer[J] . Journal of Thermal Science,2008,17(3):199 − 206.
|
[5] |
DUDA P, Institute of Thermal Power Engineering, Faculty of Mechanical Engineering, et al. Finite element method formulation in polar coordinates for transient heat conduction problems[J] . Journal of Thermal Science,2016,25(2):188 − 194.
|
[6] |
MERA N S, ELLIOTT L, INGHAM D B, et al. A comparison of boundary element method formulations for steady state anisotropic heat conduction problems[J] . Engineering Analysis with Boundary Elements,2001,25(2):115 − 128.
|
[7] |
PEREZ M M, WROBEL L C. Use of isotropic fundamental solutions for heat conduction in anisotropic media[J] . International Journal of Numerical Methods for Heat and Fluid Flow,1993,3(1):49 − 62.
|
[8] |
GAO X W. Source point isolation boundary element method for solving general anisotropic potential and elastic problems with varying material properties[J] . Engineering Analysis with Boundary Elements,2010,34(12):1049 − 1057.
|
[9] |
WANG H M, QIN Q H, KANG Y L. A new meshless method for steady-state heat conduction problems in anisotropic and inhomogeneous media[J] . Archive of Applied Mechanics,2005,74(8):563 − 579.
|
[10] |
PEREZ M M, WROBEL L C. A general integral equation formulation for homogeneous orthotropic potential problems[J] . Engineering Analysis with Boundary Elements,1992,10(4):323 − 332.
|
[11] |
DIVO E, KASSAB A J. A generalized boundary-element method for steady-state heat conduction in heterogeneous anisotropic media[J] . Numerical Heat Transfer, Part B: Fundamentals,1997,32(1):37 − 61.
|
[12] |
ZHOU H L, TIAN Y, YU B, et al. The natural boundary integral equation of the orthotropic potential problem[J] . Engineering Analysis with Boundary Element,2016,62:186 − 192.
|
[13] |
JIROUSEK J, LEON N. A powerful finite element for plate bending[J] . Computer Methods in Applied Mechanics and Engineering,1977,12(1):77 − 96.
|
[14] |
WANG K Y, ZHANG L Q, LI P C. A four-node hybrid-Trefftz annular element for analysis of axisymmetric potential problems[J] . Finite Elements in Analysis and Design,2012,60:49 − 56.
|
[15] |
王克用, 岑皓, 李培超. 位势问题Trefftz有限元法的研究进展[J] . 上海工程技术大学学报,2017,31(3):204 − 209. doi: 10.3969/j.issn.1009-444X.2017.03.003
|
[16] |
WANG K Y. A four-node hybrid-Trefftz plane elasticity element with fundamental analytical solutions[J] . Advanced Materials Research,2011,279:194 − 199.
|
[17] |
SHE Z, WANG K Y, LI P C. Hybrid Trefftz polygonal elements for heat conduction problems with inclusions/voids[J] . Computers & Mathematics with Applications,2019,78(6):1978 − 1992.
|
[18] |
SHE Z, WANG K Y, LIU H. Thermal analysis of elliptical fiber-reinforced composites by the hybrid Trefftz finite element method[J] . International Journal of Heat and Mass Transfer,2019,144:118596.
|
[19] |
WANG K Y, QIN Q H, KANG Y L, et al. A direct constraint-Trefftz FEM for analysing elastic contact problems[J] . International Journal for Numerical Methods in Engineering,2005,63(12):1694 − 1718.
|
[20] |
ZHOU J C, WANG K Y, LI P C, et al. Hybrid fundamental solution based finite element method for axisymmetric potential problems[J] . Engineering Analysis with Boundary Elements,2018,91:82 − 91.
|
[21] |
高可乐, 王克用. 轴对称热弹性问题杂交基本解Trefftz有限元分析[J] . 上海工程技术大学学报,2020,34(1):54 − 58, 75. doi: 10.3969/j.issn.1009-444X.2020.01.010
|
[22] |
WANG K Y, HUANG Z M, LI P C, et al. Trefftz finite element analysis of axisymmetric potential problems in orthotropic media[J] . Applied Mathematics and Mechanics,2013,34(5):462 − 469.
|
[23] |
WANG K Y, LI P C, WANG D Z. Trefftz-type FEM for solving orthotropic potential problems[J] . Latin American Journal of Solids and Structures,2014,11(14):2537 − 2554.
|
[24] |
王克用, 李培超. 变系数位势问题的Trefftz有限元法[J] . 上海工程技术大学学报,2014,28(1):58 − 62, 67. doi: 10.3969/j.issn.1009-444X.2014.01.013
|
[25] |
刘博, 王克用, 王明红. 轴对称Poisson方程的Trefftz有限元解法[J] . 应用数学和力学,2015,36(2):140 − 148. doi: 10.3879/j.issn.1000-0887.2015.02.003
|
[26] |
KOMPIŠ V, BÚRY J. Hybrid-Trefffz finite element formulations based on the fundamental solution[C] // Proceedings of IUTAM Symposium on Discretization Methods in Structural Mechanics, Solid Mechanics and its Applications. Dordrecht: Springer, 1999: 181-187.
|
[27] |
高可乐, 王克用, 李培超. 考虑体力的轴对称弹性问题杂交基本解有限元法[J] . 轻工机械,2020,38(1):5 − 11, 17.
|
[28] |
CAO L L, WANG H, QIN Q H. Fundamental solution based graded element model for steady-state heat transfer in FGM[J] . Acta Mechanica Solida Sinica,2012,25(4):377 − 392.
|