Volume 35 Issue 4
Feb.  2022
Turn off MathJax
Article Contents
LIN Qidie, YAN Zhenrong, WANG Huanan, CHEN Le, WEI Jingtao. Study on relaxation rule of over temperature creep stress in superheater tube of ultra-supercritical boiler[J]. Journal of Shanghai University of Engineering Science, 2021, 35(4): 333-339.
Citation: LIN Qidie, YAN Zhenrong, WANG Huanan, CHEN Le, WEI Jingtao. Study on relaxation rule of over temperature creep stress in superheater tube of ultra-supercritical boiler[J]. Journal of Shanghai University of Engineering Science, 2021, 35(4): 333-339.

Study on relaxation rule of over temperature creep stress in superheater tube of ultra-supercritical boiler

  • Received Date: 2021-09-07
  • Publish Date: 2022-02-23
  • The superheater tube in the outlet area of the high-temperature superheater box of ultra-supercritical boiler is easy to be exposed to overtemperature environment, resulting in creep stress relaxation and material failure. Based on Norton creep model, the stress relaxation behavior and creep distribution of T91 superheater tube wall during long-term thermal induction were simulated under the operating conditions of flue gas temperature of 750℃, steam temperature of 600℃ and steam pressure of 26 MPa. The simulation results show that stress relaxation phenomenon of the heat pipe firstly occurs on the inner wall and spreads along the radial direction with time accumulation. After 10000 h, the inner wall surface appears stress relaxation and relaxation accelerates. At the same time, high temperature creep behavior also occurs on the tube wall during the stress relaxation process, and the creep behavior firstly appears on the inner wall and spreads along the radial direction, and the creep degree of the inner wall is higher than that of the outer wall. After 10000 h, the thickness of pipe wall begins to decrease. The results show that the overtemperature operation of superheater tube of ultra-supercritical boiler for 10000 h is the time point from creep stress relaxation to creep damage.
  • loading
  • [1]
    何晓梅, 罗昌福, 刘漫博. 超超临界火电机组的选材及国产化进程[J] . 热加工工艺,2012,41(22):116 − 119.
    [2]
    喻聪, 司风琪, 李敏, 等. 基于燃烧与水动力耦合模型的锅炉蒸汽管超温特性研究[J] . 热能动力工程,2021(8):92 − 98.
    [3]
    NGUYEN V P, IBUPOTO F A, LI Q P, et al. Creep lifetime prediction of 9Cr-1Mo (grade T91) steel via small punch creep tests and hierarchical multiscale analysis[J] . Materials at High Temperatures,2020,37(6):462 − 477. doi: 10.1080/09603409.2020.1824852
    [4]
    LOK V, LE T G, YU J M, et al. Changes in creep property and precipitates due to aging of T91 steel after long-term service[J] . Journal of Mechanical Science and Technology,2020,34(8):3283 − 3293. doi: 10.1007/s12206-020-0720-4
    [5]
    XUE F, CHENG T L, CARNEY C S, et al. Oxide scale exfoliation analysis of type T91 SS boiler tubes[J] . Materials Performance,2020,59(12):40 − 44.
    [6]
    曹宇, 刘川槐, 潘卫国, 等. T91/TP347H异种钢焊接接头蠕变行为分析及寿命预测[J] . 动力工程学报,2021,41(8):707 − 712.
    [7]
    张力文, 张小文, 宋继萍. 金属蠕变疲劳寿命预估模型研究进展[J] . 工业加热,2021,50(2):36 − 40. doi: 10.3969/j.issn.1002-1639.2021.02.010
    [8]
    涂善东, 轩福贞, 王卫泽. 高温蠕变与断裂评价的若干关键问题[J] . 金属学报,2009,45(7):781 − 787. doi: 10.3321/j.issn:0412-1961.2009.07.002
    [9]
    HYDE T H, BECKER A A, SUN W, et al. Determination of creep properties for P91 weldment materials at 625 ℃[C]//Processing International Conference on Mechanics and Materials in Design, Chapter IV, Welds at High Temperature(WELDON)in Design. 2006: A0402. 0405.
    [10]
    HYDE T H, SUN W. Effect of bending load on the creep failure behavior of a pressurised thick walled CrMoV pipe weldment[J] . International Journal of Pressure Vessels and Piping,2002,79(5):331 − 339. doi: 10.1016/S0308-0161(02)00027-3
    [11]
    HYDE T H, SUN W, BECKER A A, et al. Life prediction of repaired welds in a pressurised CrMoV pipe with incorporation of initial damage[J] . International Journal of Pressure Vessels and Piping,2004,81(1):1 − 12. doi: 10.1016/j.ijpvp.2003.12.015
    [12]
    HYDE T H, BECKER A A, SUN W, et al. Finite-element creep damage analyses of P91 pipes[J] . International Journal of Pressure Vessels and Piping,2007,83(11-12):853 − 863.
    [13]
    王进峰, 邢迪雄, 王洪洲, 等. P91钢高温蠕变数值模拟与实验研究[J] . 中国工程机械学报,2020,18(4):283 − 287.
    [14]
    韩笑, 余海洋, 周帼彦, 等. 基于固支直杆弯曲小试样的P91/P92钢蠕变性能对比评价研究[J] . 压力容器,2021,38(4):1 − 10. doi: 10.3969/j.issn.1001-4837.2021.04.001
    [15]
    刘长军, 闫阿晨, 谈建平, 等. 全循环周期和保载时间对P91钢蠕变−疲劳裂纹扩展行为的影响[J] . 动力工程学报,2019,39(11):947 − 952.
    [16]
    任海云, 陈辉, 王风涛, 等. 压力容器不连续区的有限元分析及优化设计[J] . 机械工程师,2011(7):104 − 105. doi: 10.3969/j.issn.1002-2333.2011.07.051
    [17]
    SAWADA K, SEKIDO K, KIMURA K, et al. Effect of Init ial Microstructure on Creep Strength of ASME Grade T91 Steel[J] . ISIJ International,2020,60(2):382 − 391. doi: 10.2355/isijinternational.ISIJINT-2019-358
    [18]
    GB/T 5310-2017, 高压锅炉用无缝钢管[S].
    [19]
    潘成飞. 基于不同方法的9Cr-1Mo钢高温蠕变寿命预测研究[D]. 西安: 西北大学, 2017.
    [20]
    PAN J P, TU S H, SUN G L, et al. High-temperature creep properties and life predictions for T91 and T92 steels[J] . IOP Conference Series:Materials Science and Engineering,2018,292(1):012098.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(6)

    Article Metrics

    Article views (2178) PDF downloads(544) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return