Citation: | WU Xin, ZHANG Fan, ZHENG Qi, WANG Lianjun. Research Progress of Conductive Metal-Organic Frameworks in Thermoelectric Materials[J]. Journal of Shanghai University of Engineering Science, 2021, 35(1): 1-8. |
[1] |
TRITT T M, SUBRAMANIAN M A. Thermoelectric materials, phenomena, and applications: A bird’s eye view[J] . MRS Bulletin,2006,31(3):188 − 198. doi: 10.1557/mrs2006.44
|
[2] |
POUDEL B, HAO Q, MA Y, et al. High-thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys[J] . Science,2008,320(5876):634 − 638. doi: 10.1126/science.1156446
|
[3] |
SNYDER G J, TOBERER E S. Complex thermoelectric materials[J] . Nature Materials,2008,7(2):105 − 114. doi: 10.1038/nmat2090
|
[4] |
SINGH S, LEE S, KANG H, et al. Thermoelectric power waves from stored chemical energy[J] . Energy Storage Materials,2016,3:55 − 65. doi: 10.1016/j.ensm.2016.01.004
|
[5] |
ROWSELL J L C, YAGHI O M. Metal-organic frameworks: A new class of porous materials[J] . Microporous and Mesoporous Material,2004,73(1/2):3 − 14. doi: 10.1016/j.micromeso.2004.03.034
|
[6] |
MURRAY LJ, DINCĂ M, LONG J R. Hydrogen storage in metal- organic frameworks[J] . Chemical Society Review,2009,38(5):1294 − 1314. doi: 10.1039/b802256a
|
[7] |
LI P L, SHEN Y L, WANG D D, et al. Selective adsorption-based separation of flue gas and natural gas in zirconium metal-organic frameworks nanocrystals[J] . Molecules,2019,24(9):1822. doi: 10.3390/molecules24091822
|
[8] |
LEE J, FARHA O K, ROBERTS J, et al. Metal-organic framework materials as catalysts[J] . Chemical Society Reviews,2009,38(5):1450 − 1459. doi: 10.1039/b807080f
|
[9] |
De LOURDES GONZALEZ-JUAREZ M, FLORES E, MARTIN-GONZALEZ M, et al. Electrochemical deposition and thermoelectric characterisation of a semiconducting 2-D metal–organic framework thin film[J] . Journal of Materials Chemistry A,2020,8(26):13197 − 13206. doi: 10.1039/D0TA04939E
|
[10] |
ERICKSON K J, LEONARD F, STAVILA V, et al. Thin film thermoelectric metal-organic framework with high seebeck coefficient and low thermal conductivity[J] . Advanced Materials,2015,27(22):3453 − 3459. doi: 10.1002/adma.201501078
|
[11] |
PARK J, HINCKLEY A C, HUANG Z H, et al. High thermopower in a zn-based 3d semiconductive metal–organic framework[J] . Journal of the American Chemical Society,2020,142(49):20531 − 20535. doi: 10.1021/jacs.0c09573
|
[12] |
LEE H, VASHAEE D, WANG D Z, et al. Effects of nanoscale porosity on thermoelectric properties of SiGe[J] . Journal of Applied Physics,2010,107(9):094308 − 094314. doi: 10.1063/1.3388076
|
[13] |
SUN L, CAMPBELL M G, DINCĂ M. Electrically conductive porous metal–organic frameworks[J] . Angewandte Chemie International Edition,2016,55(11):3566 − 3579. doi: 10.1002/anie.201506219
|
[14] |
MINNICH A J, DRESSELHAUS M S, REN Z F, et al. Bulk nanostructured thermoelectric materials: current research and future prospects[J] . Energy & Environmental Science,2009,2(5):466 − 479.
|
[15] |
TAKAISHI S, HOSODA M, KAJIWARA T, et al. Electroconductive porous coordination polymer cu[cu(pdt)2] composed of donor and acceptor building units[J] . Inorganic Chemistry,2009,48(19):9048 − 9050. doi: 10.1021/ic802117q
|
[16] |
XIE LS, SKORUPSKII G, DINCĂ M. Electrically conductive metal-organic frameworks[J] . Chemical Reviews,2020,120(16):8536 − 8580. doi: 10.1021/acs.chemrev.9b00766
|
[17] |
LI W H, DENG W H, WANG G E, et al. Conductive MOFs[J] . EnergyChem,2020,2(2):100029. doi: 10.1016/j.enchem.2020.100029
|
[18] |
CHEN Z J, CUI Y T, JIN Y G, et al. Nanorods of a novel highly conductive 2D metal–organic framework based on perthiolated coronene for thermoelectric conversion[J] . Journal of Materials Chemistry C,2020,8(24):8199 − 8205. doi: 10.1039/D0TC01778G
|
[19] |
TALIN A A, CENTRONE A, FORD A C, et al. Tunable electrical conductivity in metal-organic framework thin-film devices[J] . Science,2014,343(6166):66 − 69. doi: 10.1126/science.1246738
|
[20] |
SUN L, MIYAKAI T, SEKI S, et al. Mn2(2,5-disulfhydrylbenzene-1,4-dicarboxylate): A microporous metal-organic framework with infinite (−Mn–S−)∞ chains and high intrinsic charge mobility[J] . Journal of the American Chemical Society,2013,135(22):8185 − 8188. doi: 10.1021/ja4037516
|
[21] |
SUN L, HENDON C H, MINIER M A, et al. Million-fold electrical conductivity enhancement in Fe2(DEBDC) versus Mn2(DEBDC) (E=S, O)[J] . Journal of the American Chemical Society,2015,137(19):6164 − 6167. doi: 10.1021/jacs.5b02897
|
[22] |
XIE L S, ALEXANDROV E V, SKORUPSKII G, et al. Diverse π-π stacking motifs modulate electrical conductivity in tetrathiafulvalene-based metal-organic frameworks[J] . Chemical Science,2019,10(37):8558 − 8565. doi: 10.1039/C9SC03348C
|
[23] |
KUANG X F, CHEN S C, MENG L Y, et al. Supramolecular aggregation of a redox-active copper-naphthalenediimide network with intrinsic electron conduction[J] . Chemical Communications,2019,55(11):1643 − 1646. doi: 10.1039/C8CC10269D
|
[24] |
BRYCE M R. Recent progress on conducting organic charge-transfer salts[J] . Chemical Society Reviews,1991,20(3):355 − 390. doi: 10.1039/cs9912000355
|
[25] |
SHEBERLA D, SUN L, BLOOD-FORSYTHE M A, et al. High electrical conductivity in Ni3(2,3,6,7,10,11-hexaiminotriphenylene)2, a semiconducting metal-organic graphene analogue[J] . Journal of the American Chemical Society,2014,136(25):8859 − 8862. doi: 10.1021/ja502765n
|
[26] |
TSUCHIKAWA R, LOTFIZADEH N, LAHIRI N, et al. Unique thermoelectric properties induced by intrinsic nanostructuring in a polycrystalline thin-film two-dimensional metal-organic framework, copper benzenehexathiol[J] . Physica Status Solidi A,2020,217(23):2070064. doi: 10.1002/pssa.202070064
|
[27] |
LIN C C, HUANG Y C, USMAN M, et al. Zr-MOF/polyaniline composite films with exceptional Seebeck coefficient for thermoelectric material applications[J] . ACS Applied Materials & Interfaces,2019,11(3):3400 − 3406.
|
[28] |
XUE Y F, ZHANG Z B, ZHANG Y C, et al. Boosting thermoelectric performance by in situ growth of metal organic framework on carbon nanotube and subsequent annealing[J] . Carbon,2020,157:324 − 329. doi: 10.1016/j.carbon.2019.10.049
|
[29] |
HEREBIAN D, BOTHE E, NEESE F, et al. Molecular and electronic structures of bis-(o-diiminobenzosemiquinonato)metal(II) complexes (Ni, Pd, Pt), their monocations and −anions, and of dimeric dications containing weak metal−metal bonds[J] . Journal of the American Chemical Society,2003,125(30):9116 − 9128. doi: 10.1021/ja030123u
|
[30] |
SUN L, LIAO B, SHEBERLA D, et al. A microporous and naturally nanostructured thermoelectric metal-organic framework with ultralow thermal conductivity[J] . Joule,2017,1(1):168 − 177. doi: 10.1016/j.joule.2017.07.018
|
[31] |
HMADEH M, LU Z, LIU Z, et al. New porous crystals of extended metal-catecholates[J] . Chemistry of Materials,2012,24(18):3511 − 3513. doi: 10.1021/cm301194a
|
[32] |
CAMPBELL M G, LIU S F, SWAGER T M, et al. Chemiresistive sensor arrays from conductive 2D metal–organic frameworks[J] . Journal of the American Chemical Society,2015,137(43):13780 − 13783. doi: 10.1021/jacs.5b09600
|
[33] |
MÄHRINGER A, JAKOWETZ A C, ROTTER J M, et al. Oriented thin films of electroactive triphenylene catecholate-based two-dimensional metal–organic frameworks[J] . ACS Nano,2019,13(6):6711 − 6719. doi: 10.1021/acsnano.9b01137
|
[34] |
YAO M S, LV X J, FU Z H, et al. Layer-by-layer assembled conductive metal–organic framework nanofilms for room-temperature chemiresistive sensing[J] . Angewandte Chemie International Edition,2017,56(52):16510 − 16514. doi: 10.1002/anie.201709558
|
[35] |
SMITH M K, JENSEN K E, PIVAK P A, et al. Direct self-assembly of conductive nanorods of metal–organic frameworks into chemiresistive devices on shrinkable polymer films[J] . Chemistry of Materials,2016,28(15):5264 − 5268. doi: 10.1021/acs.chemmater.6b02528
|
[36] |
LI W H, DING K, TIAN H R, et al. Conductive metal-organic framework nanowire array electrodes for high-performance solid-state supercapacitors[J] . Advanced Functional Materials,2017,27(27):1702067. doi: 10.1002/adfm.201702067
|
[37] |
KAMBE T, SAKAMOTO R, HOSHIKO K, et al. π-conjugated nickel bis(dithiolene) complex nanosheet[J] . Journal of the American Chemical Society,2013,135(7):2462 − 2465. doi: 10.1021/ja312380b
|
[38] |
KATO R. Conducting metal dithiolene complexes: Structural and electronic properties[J] . Chemical Reviews,2004,104(11):5319 − 5346. doi: 10.1021/cr030655t
|
[39] |
HUANG X, SHENG P, TU Z, et al. A two-dimensional π–d conjugated coordination polymer with extremely high electrical conductivity and ambipolar transport behaviour[J] . Nature Communications,2015,6:7408. doi: 10.1038/ncomms8408
|