Volume 35 Issue 4
Feb.  2022
Turn off MathJax
Article Contents
JIN Shuode, HE Jianping, PAN Xuehang. Progress in research methods of microstructure evolution during welding solidification[J]. Journal of Shanghai University of Engineering Science, 2021, 35(4): 305-314.
Citation: JIN Shuode, HE Jianping, PAN Xuehang. Progress in research methods of microstructure evolution during welding solidification[J]. Journal of Shanghai University of Engineering Science, 2021, 35(4): 305-314.

Progress in research methods of microstructure evolution during welding solidification

  • Received Date: 2021-05-24
  • Publish Date: 2022-02-23
  • The final microstructure of welding joint is affected by microstructure evolution during welding solidification, and then it affects mechanical properties of welding joint. Experimental-based analysis methods such as Gleeble thermal simulation experimental method, comparisons of microstructures in different areas for welding joint on microstructure evolution analysis method, microstructure evolution analysis method based on chemical composition changed, in-situ observation of synchrotron radiation were discussed. And then, theoretical-based methods of microstructure evolution during welding solidification such as phase field method, cellular automata method, Monte Carlo method were analyzed, and it obtains that these seven methods which are analyzed microstructure evolution during welding solidification have their own advantages and disadvantages.
  • loading
  • [1]
    张文钺. 焊接冶金学(基本原理)[M]. 北京: 机械工业出版社, 2003: 16.
    [2]
    CHEN S J, ZHAO L B, WANG J J, et al. Microstructure evolution and mechanical properties of simulated HAZ in a Ni-17Mo-7Cr superalloy: effects of the welding thermal cycles[J] . Journal of Materials Science,2020,55(27):13372 − 13388. doi: 10.1007/s10853-020-04927-6
    [3]
    ZHANG J, XIN W B, LUO G P, et al. Effect of welding heat input on microstructural evolution, precipitation behavior and resultant properties of the simulated CGHAZ in high-N V-alloyed steel[J] . Materials Characterization,2020,162:110201. doi: 10.1016/j.matchar.2020.110201
    [4]
    YU F Y, WEI Y H, LIU X B. The evolution of polycrystalline solidification in the entire weld: A phase-field investigation[J] . International Journal of Heat and Mass Transfer,2019,142:118450. doi: 10.1016/j.ijheatmasstransfer.2019.118450
    [5]
    BEHNAGH R A, SAMANTA A, POUR M A M, et al. Predicting microstructure evolution for friction stir extrusion using a cellular automaton method[J] . Modelling and Simulation in Materials Science and Engineering,2019,27(3):1.
    [6]
    ZHANG Z, HU C P. 3D Monte Carlo simulation of grain growth in friction stir welding[J] . Journal of Mechanical Science and Technology,2018,32(3):1287 − 1296. doi: 10.1007/s12206-018-0233-6
    [7]
    WANG L W, LIU Z Y, CUI Z Y, et al. In situ corrosion characterization of simulated weld heat affected zone on API X80 pipeline steel[J] . Corrosion Science,2014,85:401 − 410. doi: 10.1016/j.corsci.2014.04.053
    [8]
    RECCAGNI P, GUILHERME L H, LU Q, et al. Reduction of austenite-ferrite galvanic activity in the heat-affected zone of a Gleeble-simulated grade 2205 duplex stainless steel weld[J] . Corrosion Science,2019,161:108198. doi: 10.1016/j.corsci.2019.108198
    [9]
    POPOOLAA A P I, OLUWASRGUN K M, OLORUNNIWO O E, et al. Thermal and mechanical effect during rapid heating of astroloy for improving structural integrity[J] . Journal of Alloys and Compounds,2016,666:482 − 492. doi: 10.1016/j.jallcom.2016.01.012
    [10]
    SKLENICKA V, KUCHAROVA K, SVOBODA M, et al. Creep behaviour of IN 740 alloy after HAZ thermal cycle simulations[J] . International Journal of Pressure Vessels and Piping,2019,178:104000. doi: 10.1016/j.ijpvp.2019.104000
    [11]
    JEONG S, PARK G, KIM B, et al. Precipitation behavior and its effect on mechanical properties in weld heat-affected zone in age hardened FeMnAlC lightweight steels[J] . Materials Science and Engineering:A,2019,742:61 − 68.
    [12]
    KUMAR K, MASANTA M, KUMAR SAHOO S. Microstructure evolution and metallurgical characteristic of bead-on-plate TIG welding of Ti-6Al-4V alloy[J] . Journal of Materials Processing Technology,2019,265:34 − 43. doi: 10.1016/j.jmatprotec.2018.10.002
    [13]
    KAR A, YADAV D, SUWAS S, et al. Role of plastic deformation mechanisms during the microstructural evolution and intermetallics formation in dissimilar friction stir weld[J] . Materials Characterization,2020,164:110371. doi: 10.1016/j.matchar.2020.110371
    [14]
    孙景峰, 郑子樵, 林毅, 等. 2060合金FSW接头微观组织与力学性能[J] . 中国有色金属学报,2014,24(2):364 − 370.
    [15]
    杜波, 孙转平, 杨新岐, 等. 异种铝合金摩擦塞补焊接头微观组织及性能[J] . 机械工程学报,2017,53(4):43 − 48.
    [16]
    ZHANG J, LENG J, WANG C. Tuning weld metal mechanical responses via welding flux optimization of TiO2 content: Application into EH36 shipbuilding steel[J] . Metallurgical and Materials Transactions B,2019,50(5):2083 − 2087. doi: 10.1007/s11663-019-01645-6
    [17]
    GAO Y A, HUANG L J, AN Q, et al. Microstructure evolution and mechanical properties of titanium matrix composites and Ni-based superalloy joints with Cu interlayer[J] . Journal of Alloys and Compounds,2018,764:665 − 673. doi: 10.1016/j.jallcom.2018.06.107
    [18]
    LIU J, LIU H, GAO X L, et al. Microstructure and mechanical properties of laser welding of Ti-6Al-4V to Inconel 718 using Nb/Cu interlayer[J] . Journal of Materials Processing Technology,2020,277:116467. doi: 10.1016/j.jmatprotec.2019.116467
    [19]
    张丽娟, 周惦武, 刘金水, 等. 钢/铝异种金属添加粉末的激光焊接[J] . 中国有色金属学报,2013,23(12):3401 − 3409.
    [20]
    王鹏潇. 5052铝合金/钢熔钎焊界面反应行为的研究[D]. 大连: 大连理工大学, 2019.
    [21]
    范萌. 窄间距Cu/Sn-3.0Ag-0.5Cu/Ni焊点液-固界面反应[D]. 大连: 大连理工大学, 2017.
    [22]
    LANGER J S. Models of pattern formation in first-order phase transitions, chapter of Directions in Condensed Matter Physics [M]. Singapore: World Scientific, 1986.
    [23]
    BECKERMANN C, DIEPERS H J, STEINBACH I, et al. Modeling melt convection in phase-field simulations of solidification[J] . Journal of Computational Physics,1999,154(2):468 − 496.
    [24]
    BAILEY N S, HONG K M, SHIN Y C. Comparative assessment of dendrite growth and microstructure predictions during laser welding of Al 6061 via 2D and 3D phase field models[J] . Computational Materials Science,2020,172:109291. doi: 10.1016/j.commatsci.2019.109291
    [25]
    魏艳红, 王勇, 董志波, 等. 纯金属TIG焊熔池等轴晶生长的相场法模拟[J] . 焊接学报,2011,32(3):1 − 4, 8, 113.
    [26]
    AHLUWALIA R, LASKOWSKI R, NG N, et al. Phase Field Simulation of alpha/beta microstructure in titanium alloy welds[J] . Materials Research Express,2020,7(4):046517. doi: 10.1088/2053-1591/ab875a
    [27]
    CHEN L, WANG C M, XIONG L D, et al. Microstructural, porosity and mechanical properties of lap joint laser welding for 5182 and 6061 dissimilar aluminum alloys under different place configurations[J] . Materials & Design,2020,191:108625.
    [28]
    GENG S N, JIANG P, GUO L Y, et al. Multi-scale simulation of grain/sub-grain structure evolution during solidification in laser welding of aluminum alloys[J] . International Journal of Heat and Mass Transfer,2020,149:119252. doi: 10.1016/j.ijheatmasstransfer.2019.119252
    [29]
    CHOPARD B, DROZ M. 物理系统的元胞自动机模拟. 祝玉学, 赵学龙译[M]. 北京: 清华大学出版社, 2003.
    [30]
    WU H, XU W C, WANG S B, et al. A cellular automaton coupled FEA model for hot deformation behavior of AZ61 magnesium alloys[J] . Journal of Alloys and Compounds,2020,816:152562. doi: 10.1016/j.jallcom.2019.152562
    [31]
    ALAVI P, SERAJZADEH S. Microstructural changes during static recrystallization of austenitic stainless steel 304L: Cellular automata simulation[J] . Metallography, Microstructure, and Analysis,2020,9(2):223 − 238.
    [32]
    STEFAN-KHARICHA M, KHARICHA A, ZAIDAT K, et al. Impact of hydrodynamics on growth and morphology of faceted crystals[J] . Journal of Crystal Growth,2020,541:125667. doi: 10.1016/j.jcrysgro.2020.125667
    [33]
    ZHANG M, ZHOU Y L, HUANG C, et al. Simulation of temperature distribution and microstructure evolution in the molten pool of GTAW Ti-6Al-4V Alloy[J] . Materials,2018,11(11):2288. doi: 10.3390/ma11112288
    [34]
    刘仁培, 陈莉莉, 魏艳红. 镍基合金TIG焊接熔池及热影响区组织模拟[J] . 焊接学报,2020,41(3):64 − 68, 100.
    [35]
    ASADI P, BESHARATI GIVI M K, AKBARI M. Simulation of dynamic recrystallization process during friction stir welding of AZ91 magnesium alloy[J] . International Journal of Advanced Manufacturing Technology,2016,83(1-4):301 − 311. doi: 10.1007/s00170-015-7595-z
    [36]
    王忠堂, 张宏亮, 杨君宝, 等. 基于元胞自动机的AZ31镁合金复合变形动态再结晶组织演变规律[J] . 塑性工程学报,2020,27(5):161 − 166. doi: 10.3969/j.issn.1007-2012.2020.05.020
    [37]
    ROLLETT A D, SROLOVITZ D J, DOHERTY R D, et al. Computer simulation of recrystallization in non-uniformly deformed metals[J] . Acta Metallurgica,1989,37(2):627 − 639. doi: 10.1016/0001-6160(89)90247-2
    [38]
    SROLOVITZ D J, ANDERSON M P, SAHNI P S, et al. Computer simulation of grain growth–II. grain size distribution, topology, and local dynamics[J] . Acta Metallurgica,1984,32(5):793 − 802. doi: 10.1016/0001-6160(84)90152-4
    [39]
    LING S, ANDERSON M P. Development and evolution of thin film microstructures: A Monte Carlo approach[J] . Journal of Electronic Materials,1988,17(5):459 − 466. doi: 10.1007/BF02652133
    [40]
    CHRISTIAEN B, DOMAIN C, THUINET L, et al. Influence of vacancy diffusional anisotropy: Understanding the growth of zirconium alloys under irradiation and their microstructure evolution[J] . Acta Materialia,2020,195:631 − 644. doi: 10.1016/j.actamat.2020.06.004
    [41]
    TRAN A, MITCHELL J A, SWILER L P, et al. An active learning high-throughput microstructure calibration framework for solving inverse structure-process problems in materials informatics[J] . Acta Materialia,2020,194:80 − 92. doi: 10.1016/j.actamat.2020.04.054
    [42]
    CHEN K T, HAN J, SROLOVITZ D J. On the temperature dependence of grain boundary mobility[J] . Acta Materialia,2020,194:412 − 421. doi: 10.1016/j.actamat.2020.04.057
    [43]
    SON Y, CHUNG H B, LEE S. A two-dimensional Monte Carlo model for pore densification in a bi-crystal via grain boundary diffusion: Effect of diffusion rate, initial pore distance, temperature, boundary energy and number of pores[J] . Journal of the European Ceramic Society,2020,40(8):3158 − 3171. doi: 10.1016/j.jeurceramsoc.2020.02.022
    [44]
    杨亮, 魏承炀, 雷力明, 等. 两相钛合金再结晶退火组织与织构演变的蒙特卡罗模拟[J] . 物理学报,2013,62(18):348 − 356.
    [45]
    GRUJICIC M, RAMASWAMI S, SNIPES J S, et al. Prediction of the grain-microstructure evolution within a friction stir welding (FSW) joint via the use of the Monte Carlo simulation method[J] . Journal of Materials Engineering & Performance,2015,24(9):3471 − 3486.
    [46]
    ZHANG Z, TAN Z J. Integrated modelling of tool wear and microstructural evolution internal relations in friction stir welding with worn pin profiles[J] . Journal of Mechanics of Materials and Structures,2019,14(4):537 − 548. doi: 10.2140/jomms.2019.14.537
    [47]
    RODGERS T M, MITCHELL J A, TIKARE V. A Monte Carlo model for 3D grain evolution during welding[J] . Modelling and Simulation in Materials Science and Engineering,2017,25(6):064006. doi: 10.1088/1361-651X/aa7f20
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)

    Article Metrics

    Article views (587) PDF downloads(738) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return