Volume 34 Issue 4
Dec.  2020
Turn off MathJax
Article Contents
AI Yongping, TANG Qiaoxing, WANG Zejie, MO Qinglin. Research on Grass Recognition of Mowing System Based on Machine Vision[J]. Journal of Shanghai University of Engineering Science, 2020, 34(4): 369-374.
Citation: AI Yongping, TANG Qiaoxing, WANG Zejie, MO Qinglin. Research on Grass Recognition of Mowing System Based on Machine Vision[J]. Journal of Shanghai University of Engineering Science, 2020, 34(4): 369-374.

Research on Grass Recognition of Mowing System Based on Machine Vision

  • Received Date: 2019-04-12
  • Publish Date: 2020-12-30
  • In order to realize the grass recognition in the mower system, plan the moving path of the mower and cut the grass automatically, the target detection algorithm of single shot multibox detector (SSD) and convolutional architecture for fast feature embedding (Caffe) were used to train the grass recognition model on the mower. Pictures of grass cutting field were taken by raspberry pie (RPi) and sent to the working machine. The coordinate values of the grass in the picture were calculated by the working machine and returned to raspberry pie, and the axle rotation angle, the running time and direction of the rear wheel motor according to the coordinate value of the grass were calculated automatically, and then the mechanical parts of the mower were mobilized to mow the grass. The experimental results show that compared with the traditional manual mechanical mower or fence mower, the trained grass recognition model can recognize the grass normally, and the mower can better plan the mowing path automatically, which has a certain weeding effect. The research results realize the combination of machine vision and traditional machinery, and provide some ideas for the future research of intelligent machinery.
  • loading
  • [1]
    马振峰. 基于智能视觉的割草机自动控制系统设计[J] . 计算机测量与控制,2018,26(7):84 − 87, 142.
    [2]
    徐伟锋, 刘山. 基于PLC的智能割草机器人控制系统[J] . 农业工程,2020,10(1):22 − 25. doi: 10.3969/j.issn.2095-1795.2020.01.007
    [3]
    谢忠华. 基于视觉导航的割草机器人运动控制[J] . 农业工程,2016,6(5):30 − 32. doi: 10.3969/j.issn.2095-1795.2016.05.012
    [4]
    马超. 浅谈我国田间机械除草现状及发展趋势[C]//中国农业机械学会第四届青年学术年会论文集. 天津: 中国农业机械学会, 2007.
    [5]
    郭亭亭, 杨然兵, 李娟, 等. 机器视觉喷药机器人的研发[J] . 中国农机化学报,2015,36(5):215 − 219.
    [6]
    高彦杰, 于子叶. 深度学习: 核心技术、工具与案例解析[M]. 北京: 机械工业出版社, 2018.
    [7]
    彭红星, 黄博, 邵园园, 等. 自然环境下多类水果采摘目标识别的通用改进SSD模型[J] . 农业工程学报,2018,34(16):155 − 162. doi: 10.11975/j.issn.1002-6819.2018.16.020
    [8]
    IAN G, YOSHUA B, AARON C. 深度学习[M]. 赵申剑, 黎彧君, 符天凡, 等译. 北京: 人民邮电出版社, 2017.
    [9]
    Liu Wei, Anguelov Dragomir, Erhan. SSD: Single Shot MultiBox Detector[J]. 2015.
    [10]
    周瑶. 基于深度学习的舰船目标检测与识别[D]. 哈尔滨: 哈尔滨工程大学, 2018.
    [11]
    赵杰, 胡浩然, 孙启智, 等. 改进果蝇算法的运输车辆路径规划[J] . 黑龙江科技大学学报,2020,30(2):187 − 192, 204. doi: 10.3969/j.issn.2095-7262.2020.02.013
    [12]
    代峰燕, 高庆珊, 陈家庆, 等. 储油罐清洗机器人全覆盖路径规划研究[J] . 机械设计与制造,2020(2):263 − 266.
    [13]
    XU Y, GUAN G F, SONG Q W, et al. Heuristic and random search algorithm in optimization of route planning for robot’s geomagnetic navigation[J] . Computer Communications,2020,154:12 − 17. doi: 10.1016/j.comcom.2020.02.043
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(1)

    Article Metrics

    Article views (359) PDF downloads(128) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return