| Citation: | ZHU Yuyang, ZHAI Jianguang, GAO Chun, LU Huiqin. Analysis of Correlation Between Fiber Breaking Strength and Size Based on Generalized Two-Parameter Weakest Chain Statistical Model[J]. Journal of Shanghai University of Engineering Science, 2021, 35(1): 28-32. | 
 
	                | [1] | WILSON D M. Statistical tensile strength of NextelTM 610 and NextelTM 720 fibres[J] . Journal of Materials Science,1997,32(10):2535 − 2542. doi:  10.1023/A:1018538030985 | 
| [2] | 吴琪琳, 潘鼎. 国产黏胶基碳纤维强度的两种统计分布[J] . 材料导报,2000,14(11):55 − 56. doi:  10.3321/j.issn:1005-023X.2000.11.021 | 
| [3] | 李敏洁, 汪泽幸, 陈南梁. Vectran长丝断裂强力的Weibull分布统计分析[J] . 丝绸,2012, 49(10):11 − 15. | 
| [4] | WANG F, SHAO J X, KEER L M, et al. The effect of elementary fibre variability on bamboo fibre strength[J] . Materials & Design,2015,75:136 − 142. | 
| [5] | PICKERING K L, MURRAY T L. Weak link scaling analysis of high-strength carbon fibre[J] . Composites Part A: Applied Science and Manufacturing,1999,30(8):1017 − 1021. doi:  10.1016/S1359-835X(99)00003-2 | 
| [6] | XIA Z P, YU J Y, CHENG L D, et al. Study on the breaking strength of jute fibres using modified Weibull distribution[J] . Composites Part A: Applied Science and Manufacturing,2009,40(1):54 − 59. doi:  10.1016/j.compositesa.2008.10.001 | 
| [7] | 马春杰, 宁荣昌, 李琳, 等. 用Weibull方法评价化学介质对PBO纤维统计强度的影响[J] . 复合材料学报,2005,22(3):16 − 20. doi:  10.3321/j.issn:1000-3851.2005.03.003 | 
| [8] | 车辙, 李敏, 李庆辉, 等. PBO和芳纶纤维单丝拉伸性能影响因素分析[J] . 宇航材料工艺,2018,48(6):89 − 93. | 
| [9] | WATSON A S, SMITH R L. An examination of statistical theories for fibrous materials in the light of experimental data[J] . Journal of Materials Science,1985,20(9):3260 − 3270. doi:  10.1007/BF00545193 | 
| [10] | YAO J W, YU W D, PAN D. Tensile strength and its variation of PAN-based carbon fibers. III. weak-link analysis[J] . Journal of Applied Polymer Science,2008,110(6):3778 − 3784. doi:  10.1002/app.24879 | 
| [11] | WATANABE J, TANAKA F, OKUDA H, et al. Tensile strength distribution of carbon fibers at short gauge lengths[J] . Advanced Composite Materials,2014,23(5/6):535 − 550. doi:  10.1080/09243046.2014.915120 | 
| [12] | GRIFFITH A A. The phenomena of rupture and flows in solids[J] . Philosophical Transactions of the Royal Society of London: Series A,1921,221:163 − 198. | 
| [13] | BATDORF S B, Jr HEINISCH H L. Weakest link theory reformulated for arbitrary fracture criterion[J] . Journal of the American Ceramic Society,2010,61(7/8):355 − 358. | 
| [14] | LEI W S. Evaluation of the basic formulations for the cumulative probability of brittle fracture with two different spatial distributions of microcracks[J] . Fatigue & Fracture of Engineering Materials & Structures,2016,39(5):611 − 623. | 
| [15] | LEI W S. A generalized weakest-link model for size effect on strength of quasi-brittle materials[J] . Journal of Materials Science,2018,53(2):1227 − 1245. doi:  10.1007/s10853-017-1574-8 | 
| [16] | BENJEDDOU O. Weibull statistical analysis and experimental investigation of size effects on tensile behavior of dry unidirectional carbon fiber sheets[J] . Polymer Testing,2020,86:106498. doi:  10.1016/j.polymertesting.2020.106498 | 
