Citation: | BAI Xin, ZHANG Mingyi, ZHENG Nannan, WANG Jinxia, ZHAO Hang, GUAN Shaoqi, WANG Xingyan, LU Jie, LIU Xijian. Research Progress of Inorganic Nano-Catalyst for Chemodynamic Therapy[J]. Journal of Shanghai University of Engineering Science, 2020, 34(4): 324-330. |
[1] |
ZHONG X, WANG X, CHENG L, et al. GSH‐depleted PtCu3 nanocages for chemodynamic‐ enhanced sonodynamic cancer therapy[J] . Advanced Functional Materials,2019,30(4):1907954.
|
[2] |
ZHANG M, LIU X, LUO Q, et al. Tumor environment responsive degradable CuS@mSiO2@MnO2/DOX for MRI guided synergistic chemo-photothermal therapy and chemodynamic therapy[J] . Chemical Engineering Journal,2020,389:124450. doi: 10.1016/j.cej.2020.124450
|
[3] |
CHEN Q, FENG L, LIU J, et al. Intelligent albumin-MnO2 nanoparticles as pH-/H2O2 -responsive dissociable nanocarriers to modulate tumor hypoxia for effective combination therapy[J] . Advanced Materials,2016,28(33):7129 − 36. doi: 10.1002/adma.201601902
|
[4] |
胡进明, 刘世勇. 用于化学动力学疗法的高分子纳米载体研究进展[J] . 中国科学(化学),2020,50(3):366 − 376.
|
[5] |
ZHANG C, BU W, NI D, et al. Synthesis of iron anometallic glasses and their application in cancer therapy by a localized Fenton reaction[J] . Angewandte Chemie. International Edition in English,2016,55(6):2101 − 2106. doi: 10.1002/anie.201510031
|
[6] |
KIM J, CHO H R, JEON H, et al. Continuous O2-evolving MnFe2O4 nanoparticle-anchored mesoporous silica nanoparticles for efficient photodynamic therapy in hypoxic cancer[J] . Journal of the American Chemical Society,2017,139(32):10992 − 10995. doi: 10.1021/jacs.7b05559
|
[7] |
LI X, LEE D, HUANG J D, et al. Phthalocyanine-assembled nanodots as photosensitizers for highly efficient type Ⅰ photoreactions in photodynamic therapy[J] . Angewandte Chemie. International Edition in English,2018,57(31):9885 − 9890. doi: 10.1002/anie.201806551
|
[8] |
LAN G, NI K, VERONEAU S S, et al. Titanium-based nanoscale metal-organic framework for type Ⅰ photodynamic therapy[J] . Journal of the American Chemical Society,2019,141(10):4204 − 4208. doi: 10.1021/jacs.8b13804
|
[9] |
CHEN H, TIAN J, HE W, et al. H2O2-activatable and O2-evolving nanoparticles for highly efficient and selective photodynamic therapy against hypoxic tumor cells[J] . Journal of the American Chemical Society,2015,137(4):1539 − 1547. doi: 10.1021/ja511420n
|
[10] |
HUANG L, LI Z, ZHAO Y, et al. Ultralow-power near infrared lamp light operable targeted organic nanoparticle photodynamic therapy[J] . Journal of the American Chemical Society,2016,138(44):14586 − 14591. doi: 10.1021/jacs.6b05390
|
[11] |
WU F, ZHANG Q, ZHANG M, et al. Hollow porous carbon coated FeS2-based nanocatalysts for multimodal imaging-guided photothermal, starvation, and triple-enhanced chemodynamic therapy of cancer[J] . ACS Applied Materials and Interfaces,2020,12(9):10142 − 10155. doi: 10.1021/acsami.0c00170
|
[12] |
杨博文, 陈雨, 施剑林. 纳米酶在肿瘤催化诊疗方面的应用[J] . 生物化学与生物物理进展,2018,45(2):237 − 255.
|
[13] |
CHEN Z, YIN J J, ZHOU Y T, et al. Dual enzyme-like activities of iron oxide nanoparticles and their implication for diminishing cytotoxicity[J] . ACS Nano,2012,6(5):4001 − 4012. doi: 10.1021/nn300291r
|
[14] |
CIOLOBOC D, KENNEDY C, BOICE E N, et al. Trojan horse for light-triggered bifurcated production of singlet oxygen and Fenton-reactive iron within cancer cells[J] . Biomacromolecules,2018,19(1):178 − 187. doi: 10.1021/acs.biomac.7b01433
|
[15] |
CHEN Q, ZHOU J, CHEN Z, et al. Tumor-specific expansion of oxidative stress by glutathione depletion and use of a Fenton nanoagent for enhanced chemodynamic therapy[J] . ACS Applied Materials and Interfaces,2019,11(34):30551 − 30565. doi: 10.1021/acsami.9b09323
|
[16] |
TANG Z, ZHANG H, LIU Y, et al. Antiferromagnetic pyrite as the tumor microenvironment-mediated nanoplatform for self-ernhanced tumor imaging and therapy[J] . Advanced Materials,2017,29(47):1701683. doi: 10.1002/adma.201701683
|
[17] |
HUO M, WANG L, CHEN Y, et al. Tumor-selective catalytic nanomedicine by nanocatalyst delivery[J] . Nature Communications,2017,8(1):1 − 12. doi: 10.1038/s41467-016-0009-6
|
[18] |
LIU Y, WU J, JIN Y, et al. Copper(I) phosphide nanocrystals for in Situ Self-Generation Magnetic resonance imaging-guided photothermal-enhanced chemodynamic synergetic therapy resisting Ddeep-seated tumor[J] . Advanced Functional Materials,2019,29(50):1904678. doi: 10.1002/adfm.201904678
|
[19] |
POYTON M F, SENDECKI A M, CONG X, et al. Cu2+ binds to hosphatidylethanolamine and increases oxidation in lipid membranes[J] . Journal of the American Chemical Society,2016,138(5):1584 − 1590. doi: 10.1021/jacs.5b11561
|
[20] |
TANG Z, LIU Y, HE M, et al. Chemodynamic therapy: Tumour microenvironment-mediated Fenton and Fenton-like reactions[J] . Angewandte Chemie. International Edition in English,2019,58(4):946 − 956. doi: 10.1002/anie.201805664
|
[21] |
LIN L S, HUANG T, SONG J, et al. Synthesis of copper peroxide nanodots for H2O2 self-supplying chemodynamic therapy[J] . Journal of the American Chemical Society,2019,141(25):9937 − 9945. doi: 10.1021/jacs.9b03457
|
[22] |
WANG X, ZHONG X, ZHA Z, et al. Biodegradable CoS2 nanoclusters for photothermal-enhanced chemodynamic therapy[J] . Applied Materials Today,2020,18:100464. doi: 10.1016/j.apmt.2019.100464
|
[23] |
LIN L S, SONG J, SONG L, et al. Simultaneous Fenton-like ion delivery and glutathione depletion by MnO2-based nanoagent to enhance chemodynamic therapy[J] . Angewandte Chemie. International Edition in English,2018,57(18):4902 − 4906. doi: 10.1002/anie.201712027
|
[24] |
WANG H, BREMNER D H, WU K, et al. Platelet membrane biomimetic bufalin-loaded hollow MnO2 nanoparticles for MRI-guided chemo-chemodynamic combined therapy of cancer[J] . Chemical Engineering Journal,2020,382:122848. doi: 10.1016/j.cej.2019.122848
|
[25] |
LIU Y, ZHEN W, JIN L, et al. All-in-one theranostic nanoagent with enhanced reactive oxygen species generation and modulating tumor microenvironment ability for effective tumor eradication[J] . ACS Nano,2018,12(5):4886 − 4893. doi: 10.1021/acsnano.8b01893
|
[26] |
WANG Z, LIU B, SUN Q, et al. Fusiform-like copper(II)-based metal-organic framework through relief hypoxia and GSH-depletion Co-enhanced starvation and chemodynamic synergetic cancer therapy[J] . ACS Applied Materials and Interfaces,2020,12(15):17254 − 17267. doi: 10.1021/acsami.0c01539
|
[27] |
WANG X, LV F, LI T, et al. Electrospun micropatterned nanocomposites incorporated with Cu2S nanoflowers for skin tumor therapy and wound healing[J] . ACS Nano,2017,11(11):11337 − 11349. doi: 10.1021/acsnano.7b05858
|
[28] |
SHI Y, ZHANG J, HUANG H, et al. Fe-doped polyoxometalate as acid-aggregated nanoplatform for NIR-II photothermal-enhanced chemodynamic therapy[J] . Advanced Healthcare Materials,2020,9(9):2000005. doi: 10.1002/adhm.202000005
|
[29] |
YANG C, YOUNIS M R, ZHANG J, et al. Programmable NIR-II photothermal-enhanced starvation-primed chemodynamic therapy using glucose oxidase-functionalized ancient pigment nanosheets[J] . Small,2020,16(25):2001518. doi: 10.1002/smll.202001518
|
[30] |
WANG Y, AN L, LIN J, et al. A hollow Cu9S8 theranostic nanoplatform based on a combination of increased active sites and photothermal performance in enhanced chemodynamic therapy[J] . Chemical Engineering Journal,2020,385:123925. doi: 10.1016/j.cej.2019.123925
|
[31] |
WANG S, WANG Z, YU G, et al. Tumor-specific drug release and reactive oxygen species generation for cancer chemo/chemodynamic combination therapy[J] . Advanced Science,2019,6(5):1801986. doi: 10.1002/advs.201801986
|
[32] |
HANG L, LI H, ZHANG T, et al. Au@Prussian blue hybrid nanomaterial synergy with a chemotherapeutic drug for tumor diagnosis and chemodynamic therapy[J] . ACS Applied Materials and Interfaces,2019,11(43):39493 − 39502. doi: 10.1021/acsami.9b13470
|
[33] |
KANKALA R K, TSAI P Y, KUTHATI Y, et al. Overcoming multidrug resistance through co-delivery of ROS-generating nano-machinery in cancer therapeutics[J] . Journal of Materials Chemistry B,2017,5(7):1507 − 1517. doi: 10.1039/C6TB03146C
|
[34] |
REN Z, SUN S, SUN R, et al. A metal-polyphenol-coordinated nanomedicine for synergistic cascade cancer chemotherapy and chemodynamic therapy[J] . Advanced Materials,2020,32(6):1906024. doi: 10.1002/adma.201906024
|
[35] |
LIU C, WANG D, ZHANG S, et al. Biodegradable biomimic copper/manganese silicate nanospheres for chemodynamic/photodynamic synergistic therapy with simultaneous glutathione depletion and hypoxia relief[J] . ACS Nano,2019,13(4):4267 − 4277. doi: 10.1021/acsnano.8b09387
|
[36] |
WANG P, LIANG C, ZHU J, et al. Manganese-Based nanoplatform as metal ion-enhanced ROS generator for combined chemodynamic/photodynamic therapy[J] . ACS Applied Materials and Interfaces,2019,11(44):41140 − 41147. doi: 10.1021/acsami.9b16617
|
[37] |
DONG S, XU J, JIA T, et al. Upconversion-mediated ZnFe2O4 nanoplatform for NIR-enhanced chemodynamic and photodynamic therapy[J] . Chemical Science,2019,10(15):4259 − 4271. doi: 10.1039/C9SC00387H
|
[38] |
NI K, LAN G, LIN W. Nanoscale metal-organic frameworks generate reactive oxygen species for cancer therapy[J] . ACS Cent Sci,2020,6(6):861 − 868. doi: 10.1021/acscentsci.0c00397
|
[39] |
NI K, LAN G, SONG Y, et al. Biomimetic nanoscale metal–organic framework harnesses hypoxia for effective cancer radiotherapy and immunotherapy[J] . Chemical Science,2020,11(29):7641 − 7653. doi: 10.1039/D0SC01949F
|