Volume 37 Issue 2
Jun.  2023
Turn off MathJax
Article Contents
WEI Peng, YI Zhaozang, ZHANG Hengyun, SUN Haitao, ZENG Shuzhen, CHEN Yun. Research on refrigeration cooling and temperature control of thermoelectric devices for cylindrical battery module[J]. Journal of Shanghai University of Engineering Science, 2023, 37(2): 207-214. doi: 10.12299/jsues.22-0037
Citation: WEI Peng, YI Zhaozang, ZHANG Hengyun, SUN Haitao, ZENG Shuzhen, CHEN Yun. Research on refrigeration cooling and temperature control of thermoelectric devices for cylindrical battery module[J]. Journal of Shanghai University of Engineering Science, 2023, 37(2): 207-214. doi: 10.12299/jsues.22-0037

Research on refrigeration cooling and temperature control of thermoelectric devices for cylindrical battery module

doi: 10.12299/jsues.22-0037
  • Received Date: 2022-02-25
  • Publish Date: 2023-06-20
  • Based on the Peltier effect, a method of real-time controlling battery temperature through thermoelectric device (TED) was proposed. It integrated the refrigeration and heating functions of TED, has a good temperature control effect, and can meet the thermal management needs of battery modules. The battery module consists of 3×5 rows of cylindrical batteries filled with foam metal composite phase change materials, and the thermoelectric device was arranged on the large face of the battery module shell. Compared with the liquid cooling experiment, thermoelectric refrigeration could significantly reduce the temperature of the battery module at 1~5 W of single cell heat generation power, and control the temperature difference of the module within 5 ℃. The temperature control experiment further shows that the TED controlled by the thermostat in real-time can effectively stabilize the module temperature and control the temperature fluctuation within 2~3 ℃. In addition, a one-dimensional thermal resistance network was established, and the thermal performance of TED was analyzed based on steady-state theory. The result shows that under the refrigeration condition, the cold junction temperature of TED is decreasing first and then increasing with increasing of its current, and the hot junction temperature is proportional to the TED current.
  • loading
  • [1]
    YI J, KIM U S, SHIN C B, et al. Modeling the temperature dependence of the discharge behavior of a lithium-ion battery in low environmental temperature[J] . Journal of Power Sources,2013,244:143 − 148. doi: 10.1016/j.jpowsour.2013.02.085
    [2]
    PESARAN A A. Battery thermal models for hybrid vehicle simulations[J] . Journal of Power Sources,2002,110(2):377 − 382. doi: 10.1016/S0378-7753(02)00200-8
    [3]
    WU M S, CHIANG P C J. High-rate capability of lithium-ion batteries after storing at elevated temperature[J] . Electrochimica Acta,2007,52(11):3719 − 3725. doi: 10.1016/j.electacta.2006.10.045
    [4]
    RAMADASS P, HARAN B, WHITE R, et al. Capacity fade of Sony 18650 cells cycled at elevated temperatures: Part I. Cycling performance[J] . Journal of Power Sources,2002,112(2):606 − 613. doi: 10.1016/S0378-7753(02)00474-3
    [5]
    MENALE C, D'ANNIBALE F, MAZZAROTTA B, et al. Thermal management of lithium-ion batteries: An experimental investigation[J] . Energy,2019,182:57 − 71. doi: 10.1016/j.energy.2019.06.017
    [6]
    BANDHAUER T M, GARIMELLA S, FULLER T F. A critical review of thermal issues in lithium-ion batteries[J] . Journal of The Electrochem Society,2011,158(3):21 − 25. doi: 10.1149/1.3515880
    [7]
    RAO Z H, WANG S F. A review of power battery thermal energy management[J] . Renewable and Sustainable Energy Reviews,2011,15:4554 − 4571. doi: 10.1016/j.rser.2011.07.096
    [8]
    SONG H S, JEONG J B, LEE B H, et al. Experimental study on the effects of pre-heating a battery in a low-temperature environment[C]//Proceedings of 2012 IEEE Vehicle Power and Propulsion Conference. Seoul: IEEE, 2012: 1198-1201.
    [9]
    ZHANG T S, GAO C, GAO Q, et al. Status and development of electric vehicle integrated thermal management from BTM to HVAC[J] . Applied Thermal Engineering,2015, 88: 398 − 409. doi: 10.1016/j.applthermaleng.2015.02.001
    [10]
    MATTHE R, TURNER L, METTLACH H. VOLTEC battery system for electric vehicle with extended range[J] . SAE International Journal of Engines,2011,4(1):1944 − 1962. doi: 10.4271/2011-01-1373
    [11]
    WANG Z W, ZHANG H Y, XIA X. Experimental investigation on the thermal behavior of cylindrical battery with composite paraffin and fin structure[J] . International Journal of Heat and Mass Transfer,2017,109:958 − 970. doi: 10.1016/j.ijheatmasstransfer.2017.02.057
    [12]
    YANG H, ZHANG H Y, SUI Y, et al. Numerical analysis and experimental visualization of phase change material melting process for thermal management of cylindrical power battery[J] . Applied Thermal Engineering,2018,128:489 − 499. doi: 10.1016/j.applthermaleng.2017.09.022
    [13]
    ZHAO D L, TAN G. A review of thermoelectric cooling: Materials, modeling and applications[J] . Applied Thermal Engineering,2014,66(1-2):15 − 24. doi: 10.1016/j.applthermaleng.2014.01.074
    [14]
    RIFFAT S B, MA X. Improving the coefficient of performance of thermoelectric cooling systems: A review[J] . International Journal of Energy Research,2004,28(8):753 − 768.
    [15]
    SUH I S, CHO H, LEE M. Feasibility study on thermoelectric device to energy storage system of an electric vehicle[J] . Energy,2014,76:436 − 444. doi: 10.1016/j.energy.2014.08.040
    [16]
    王宇, 张国庆, 刘湘云. 半导体制冷技术在动力电池热管理中的应用研究[J] . 广东化工,2015,42(13):16 − 17. doi: 10.3969/j.issn.1007-1865.2015.13.008
    [17]
    ALAOUI C, SALAMEH Z M. Solid state heater cooler: Design and evaluation[C]//Proceedings of 2001 Large Engineering Systems Conference on Power Engineering. Halifax: IEEE, 2001: 139-145.
    [18]
    ALAOUI C, SALAMEH Z M. A novel thermal management for electric and hybrid vehicles[J] . IEEE Transactions on Vehicular Technology,2005,54(2):468 − 476. doi: 10.1109/TVT.2004.842444
    [19]
    ZHANG H Y, MUI Y C, TARIN M. Analysis of thermoelectric cooler performance for high power electronic packages[J] . Applied Thermal Engineering,2010,30(6-7):561 − 568. doi: 10.1016/j.applthermaleng.2009.10.020
    [20]
    JIANG L, ZHANG H Y, LI J W, et al. Thermal performance of a cylindricalbattery module impregnated with PCM composite based on thermoelectric cooling[J] . Energy,2019,118:116048.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(3)

    Article Metrics

    Article views (324) PDF downloads(558) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return