2023, 37(2): 190-197.
doi: 10.12299/jsues.22-0173
摘要:
为提高基于表面肌电图(surface Electromyo Graphy, sEMG)手势识别的准确率,提出一种改进深度森林相结合的手部运动识别方法. 将极致梯度提升(eXtreme Gradient Boosting, XGBoost)树引入深度森林模型,与随机森林和完全随机森林共同组成深度森林的级联结构. 深度森林模型在每个层次上集成3种不同的基于树的分类器,共4个决策森林,包括1个随机森林、1个极端随机森林和2个极致梯度提升树,利用不同学习算法之间的互补性来提高分类性能. 为评估该模型性能,采集4名健康受试者的表面肌电信号进行手部动作识别验证试验,并与随机森林、支持向量机、一维卷积神经网络及二维卷积神经网络等算法比较. 结果表明,提出方法对16种常用手部动作的平均识别精度为94.14%,对表面肌电信号实现了较高的分类准确率.