留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

介孔片状NiO/Co3O4催化剂催化碳烟燃烧性能研究

孙红华 孙彪 李鹏 邱健强 张念陈 王金果 王秀通

孙红华, 孙彪, 李鹏, 邱健强, 张念陈, 王金果, 王秀通. 介孔片状NiO/Co3O4催化剂催化碳烟燃烧性能研究[J]. 上海工程技术大学学报, 2023, 37(2): 120-127. doi: 10.12299/jsues.22-0064
引用本文: 孙红华, 孙彪, 李鹏, 邱健强, 张念陈, 王金果, 王秀通. 介孔片状NiO/Co3O4催化剂催化碳烟燃烧性能研究[J]. 上海工程技术大学学报, 2023, 37(2): 120-127. doi: 10.12299/jsues.22-0064
SUN Honghua, SUN Biao, LI Peng, QIU Jianqiang, ZHANG Nianchen, WANG Jinguo, WANG Xiutong. Research on Enhanced catalytic soot combustion performance over NiO/Co3O4 within mesoporous nanosheets[J]. Journal of Shanghai University of Engineering Science, 2023, 37(2): 120-127. doi: 10.12299/jsues.22-0064
Citation: SUN Honghua, SUN Biao, LI Peng, QIU Jianqiang, ZHANG Nianchen, WANG Jinguo, WANG Xiutong. Research on Enhanced catalytic soot combustion performance over NiO/Co3O4 within mesoporous nanosheets[J]. Journal of Shanghai University of Engineering Science, 2023, 37(2): 120-127. doi: 10.12299/jsues.22-0064

介孔片状NiO/Co3O4催化剂催化碳烟燃烧性能研究

doi: 10.12299/jsues.22-0064
基金项目: 国家自然科学基金面上项目资助(22076117);上海市自然科学基金项目资助(20ZR1422500);上海市松江区第五届拔尖人才培养资助计划
详细信息
    作者简介:

    孙红华(1994−),男,硕士,研究方向为柴油车尾气净化. E-mail:18605625362@163.com

    通讯作者:

    王金果(1982−),男,教授,博士,研究方向为环境污染控制. E-mail:Jinguowang1982@sues.edu.cn

  • 中图分类号: O643.32

Research on Enhanced catalytic soot combustion performance over NiO/Co3O4 within mesoporous nanosheets

  • 摘要: 采用水热结合等体积浸渍法制备一系列NiO/Co3O4介孔纳米片催化剂,并以柴油机碳烟催化燃烧为模型反应评价其催化性能. 研究表明,当Ni/Co物质的量比为12%时,所制备的催化剂12NiCo具有最佳碳烟颗粒催化燃烧活性,其Tm为347 ℃,CO2选择性为100%,主要归因于以下原因:1)二维片状结构及其较高的比表面积有效增大了催化剂与碳烟颗粒的接触界面;2)纳米片具有丰富的介孔孔道,有利于降低传质阻力,进而促进气体反应物的吸附与扩散;3)NiO的引入增强了催化剂的氧化还原能力,促进了氧物种的吸附与活化生成活性氧物种,同时也促进了NO氧化形成氧化能力更强的NO2参与反应,进一步提升催化活性. 此外,该催化剂12NiCo具有良好的循环使用性能,显示了一定的潜在实用价值.
  • 图  1  不同催化剂的场发射扫描电镜图

    Figure  1.  FESEM images of different catalysts

    图  2  不同催化剂的XRD谱图

    Figure  2.  XRD patterns of different catalysts

    图  3  不同催化剂的拉曼光谱图

    Figure  3.  Raman spectra of different catalysts

    图  4  不同催化剂低温N2吸脱附等温线和孔径分布曲线

    Figure  4.  N2 adsorption-desorption isotherms and pore size distribution curves of different catalysts

    图  5  不同催化剂的XPS谱图

    Figure  5.  XPS spectra of different catalysts

    图  6  不同催化剂的H2-TPR谱图

    Figure  6.  H2-TPR profiles of different catalysts

    图  7  不同催化剂碳烟催化燃烧曲线图和柱状图

    Figure  7.  Activity date curve and histogram of soot combustion over different catalysts

    图  8  不同催化剂动力学测试图

    Figure  8.  Kinetic diagram of different catalysts

    图  9  催化剂12NiCo活性循环测试活性图及柱状图

    Figure  9.  Stability test and histogram of 12NiCo

    表  1  不同催化剂的物理结构参数及H2消耗量

    Table  1.   Physicochemical parameters and H2 consumption of different catalysts

    CatalystSBET/
    (m2•g−1)
    VP/
    (cm3•g−1)
    DP/
    nm
    Crystallize size/
    nm
    H2 consumption/
    (mmol•g−1)
    Co3O4200.0942429.012.1
    2NiCo190.0912215.412.4
    7NiCo170.0872013.012.5
    12NiCo150.0741912.112.8
    20NiCo110.0511810.912.6
    30NiCo90.0221510.312.5
    下载: 导出CSV

    表  2  不同催化剂的元素组成及价态参数

    Table  2.   Elemental composition and chemical valence states of different catalysts

    CatalystNi•2p Co•2p O•1s
    Ni2+ /%Ni3+ /%Ni3+ /Ni2+Co2+ /%Co3+ /%Co3+ /Co2+Oads /%Olatt /%Oads /Olatt
    Co3O4 48 52 1.08 25 75 0.33
    2NiCo 51 49 0.96 47 53 1.13 40 60 0.67
    7NiCo 60 40 0.67 45 55 1.22 49 51 0.96
    12NiCo 67 33 0.49 42 58 1.38 63 37 1.70
    20NiCo 55 45 0.81 46 54 1.17 84 16 5.25
    30NiCo 52 48 0.92 50 50 1.00 90 10 9.0
    下载: 导出CSV
  • [1] 贺泓, 翁端, 资新运. 柴油车尾气排放污染控制技术综述[J] . 环境科学,2007,28(6):1169 − 1177. doi: 10.3321/j.issn:0250-3301.2007.06.001
    [2] 罗明. 柴油机尾气排放控制技术分析[J] . 中国新技术新产品,2014(14):34.
    [3] PIUMETTI M, BENSAID S, RUSSO N, et al. Nanostructured ceria-based catalysts for soot combustion: investigations on the surface sensitivity[J] . Applied Catalysis B:Environmental,2015,165:742 − 751. doi: 10.1016/j.apcatb.2014.10.062
    [4] 李炳章, 张文军, 张园园, 等. 柴油车尾气净化技术研究进展[J] . 山东化工,2019,48(9):105 − 106. doi: 10.3969/j.issn.1008-021X.2019.15.042
    [5] LI P Y, FENG L, YUAN F L, et al. Effect of surface copper species on NO+CO reaction over xCuO-Ce0.9Zr0.1O2 catalysts: in situ DRIFTS studies[J] . Catalysts,2016,6:124. doi: 10.3390/catal6080124
    [6] CUI B, ZHOU L J, LI K, et al. Holey Co-Ce oxide nanosheets as a highly efficient catalyst for diesel soot combustion[J] . Applied Catalysis B:Environmental,2020,267:118670. doi: 10.1016/j.apcatb.2020.118670
    [7] CHEN Y, FAN Z X, ZHANG Z C, et al. Two-dimensional metal nanomaterials: Synthesis, properties, and applications[J] . Chemical Reviews,2018,118:6409 − 6455. doi: 10.1021/acs.chemrev.7b00727
    [8] DONG R H, ZHANG T, FENG X L. Interface-assisted synthesis of 2D materials: trend and challenges[J] . Chemical Reviews,2018,118:6189 − 6235. doi: 10.1021/acs.chemrev.8b00056
    [9] JIAN S Q, YANG Y X, REN W, et al. Kinetic analysis of morphologies and crystal planes of nanostructured CeO2 catalysts on soot oxidation[J] . Chemical Engineering Science,2020,226:115891. doi: 10.1016/j.ces.2020.115891
    [10] ANEGGI E, WIATER D, CARLA D L, et al. Shape-dependent activity of ceria in soot combustion[J] . ACS Catalysis,2013,4:172 − 181.
    [11] WANG M, ZHANG Y, YU Y B, et al. Synergistic effects of multicomponents produce outstanding soot oxidation activity in a Cs/Co/MnOx catalyst[J] . Environmental Science Technology,2021,55:240 − 248. doi: 10.1021/acs.est.0c06082
    [12] LABCHIR N, HANNOUR A, ABDERRAHIM A, et al. Enhanced magnetic properties of magneto-electrodeposited Co and Ni nanowires[J] . Current Applied Physics,2021,25:33 − 40. doi: 10.1016/j.cap.2021.02.010
    [13] MOHAMED I A. Assessment of using carbon soot as economic adsorbing material for the removal of cobalt (II) from aqueous solution[J] . Main Group Chemistry,2014,13:353 − 362. doi: 10.3233/MGC-140147
    [14] LIU J, ZHAO Z, WANG J Q, et al. The highly active catalysts of nanometric CeO2-supported cobalt oxides for soot combustion[J] . Applied Catalysis B:Environmental,2008,84:185 − 195. doi: 10.1016/j.apcatb.2008.03.017
    [15] ARANTXA D Q, MIRIAM N G, DOLORES L C, et al. Role of hydroxyl groups in the preferential oxidation of CO over copper oxide-cerium oxide catalysts[J] . ACS Catalysis,2016,6:1723 − 1731. doi: 10.1021/acscatal.5b02741
    [16] LAI H W, WU Q, ZHAO J, et al. Mesostructured NiO/Ni composites for high-performance electrochemical energy storage[J] . Energy & Environmental Science,2016,9:2053 − 2060.
    [17] LE T A, KIM M S, LEE S H, et al. CO and CO2 methanation over supported Ni catalysts[J] . Catalysis Today,2017,293-294:89 − 96. doi: 10.1016/j.cattod.2016.12.036
    [18] ZHAI G J, WANG J G, CHEN Z M, et al. Boosting soot combustion efficiency of Co3O4 nanocrystals via tailoring crystal facets[J] . Chemical Engineering Journal,2018,337:488 − 498. doi: 10.1016/j.cej.2017.12.141
    [19] ZHAI G J, WANG J G, CHEN Z M, et al. Highly enhanced soot oxidation activity over 3DOM Co3O4-CeO2 catalysts by synergistic promoting effect[J] . Journal of Hazardous Materials,2019,363:214 − 226. doi: 10.1016/j.jhazmat.2018.08.065
    [20] MARRANI A G, NOVELLI V, SHEEHAN S, et al. Probing the redox states at the surface of electroactive nanoporous NiO thin films[J] . ACS Applied Materials & Interfaces,2014,6:143 − 152.
    [21] STANNORE B R, BRILHAC J F, GILOT P. The oxidation of soot: A review of experiments, mechanisms and models[J] . Carbon,2001,39:2247 − 2268. doi: 10.1016/S0008-6223(01)00109-9
    [22] KIM H R, CHOI K I, KIM K M, et al. Ultra-fast responding and recovering C2H5OH sensors using SnO2 hollow spheres prepared and activated by Ni templates[J] . Chemical Communications,2010,46:5061 − 5063. doi: 10.1039/c0cc00213e
    [23] WU E H, FENG X S, ZHENG Y B, et al. Inverse coprecipitation directed porous core-shell Mn-Co-O catalyst for efficient low temperature propane oxidation[J] . ACS Sustainable Chemistry & Engineering,2020,8:5787 − 5798.
  • 加载中
图(9) / 表(2)
计量
  • 文章访问数:  218
  • HTML全文浏览量:  90
  • PDF下载量:  761
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-22
  • 刊出日期:  2023-06-20

目录

    /

    返回文章
    返回