留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

SiC@CNFs锂离子电池负极材料的制备及其循环性能研究

王鑫 汪丽莉 刘烨

王鑫, 汪丽莉, 刘烨. SiC@CNFs锂离子电池负极材料的制备及其循环性能研究[J]. 上海工程技术大学学报, 2023, 37(2): 140-147. doi: 10.12299/jsues.22-0038
引用本文: 王鑫, 汪丽莉, 刘烨. SiC@CNFs锂离子电池负极材料的制备及其循环性能研究[J]. 上海工程技术大学学报, 2023, 37(2): 140-147. doi: 10.12299/jsues.22-0038
WANG Xin, WANG Lili, LIU Ye. Study on preparation and cycling performance of anode materials for SiC@CNFs lithium-ion battery[J]. Journal of Shanghai University of Engineering Science, 2023, 37(2): 140-147. doi: 10.12299/jsues.22-0038
Citation: WANG Xin, WANG Lili, LIU Ye. Study on preparation and cycling performance of anode materials for SiC@CNFs lithium-ion battery[J]. Journal of Shanghai University of Engineering Science, 2023, 37(2): 140-147. doi: 10.12299/jsues.22-0038

SiC@CNFs锂离子电池负极材料的制备及其循环性能研究

doi: 10.12299/jsues.22-0038
详细信息
    作者简介:

    王鑫:王 鑫(1997−),女,在读硕士,研究方向为锂离子电池负极材料. E-mail:1379670382@qq.com

    通讯作者:

    汪丽莉(1981−),女,讲师,博士,研究方向为能源材料. E-mail:llwang@sues.edu.cn

  • 中图分类号: TQ152; TM242

Study on preparation and cycling performance of anode materials for SiC@CNFs lithium-ion battery

  • 摘要: 通过静电纺丝技术结合碳化工艺制备一种SiC增强碳纳米纤维(SiC@CNFs)复合结构. TGA、XRD、XPS及SEM的样品测试结果显示,SiC颗粒含量(质量分数,全文同)为62%,且均匀分布于CNFs的表面. 该结构制备的锂离子电池负极材料既保留了CNFs的高导电性,又获得了SiC增强的结构韧性. 电化学性能测试结果表明,将其作为锂离子电池负极材料,循环500次后,容量保留率高达134.01%,远高于CNFs. 同时,该结构的电化学阻抗值变化较小,导电性能保持较好. 通过静电纺丝技术制备的SiC@CNFs结构作为锂离子电池负极材料,制作成本低,结构可控且性能稳定,是目前对电池负极材料的有益补充.
  • 图  1  SiC@CNFs制备工艺流程图

    Figure  1.  Preparation process flow chart of SiC@CNFs

    图  2  样品的XRD及XPS图

    Figure  2.  XRD and XPS diagrams of samples

    图  3  样品的热重分析图

    Figure  3.  TGA diagrams of samples

    图  4  样品的SEM图

    Figure  4.  SEM diagrams of samples

    图  5  样品的CV及初始充放电容量测试图

    Figure  5.  CV and the initial charge and discharge capacity diagrams of samples

    图  6  样品的循环性能测试图

    Figure  6.  Circular performance diagrams of samples

    图  7  样品的电化学阻抗谱图

    Figure  7.  EIS of samples

    表  1  SiC、SiC@CNFs和CNFs样品循环性能对比

    Table  1.   Comparison of cycle performance of SiC, SiC@CNFs and CNFs samples

    样品碳含量/%初始放电比容量/
    (mAh•g−1)
    循环5次后放电比容量/
    (mAh•g−1)
    循环500次后放电比容量/
    (mAh•g−1)
    容量保留率/%
    CNFs100534.42215.2162.7329.15
    SiC@CNFs38417.08137.42184.15134.01
    SiC064.0228.7172.41396.49
    下载: 导出CSV

    表  2  样品在初始状态和500次循环后的状态下的电阻值

    Table  2.   Resistance values for samples at the initial and 500-cycled states

    样品初始状态 循环500次后
    R1RctR1Rct
    CNFs4.1418.65 24.5156.88
    SiC@CNFs3.1111.397.8920.49
    SiC4.4282.814.3620.89
    下载: 导出CSV
  • [1] SCROSATI B, GARCHE J. Lithium batteries: Status, prospects and future[J] . Journal of Power Sources,2010,195(9):2419 − 2430. doi: 10.1016/j.jpowsour.2009.11.048
    [2] GONZALEZ A F, YANG N H, LIU R S. Silicon anode design for lithium-ion batteries: Progress and perspectives[J] . The Journal of Physical Chemistry C,2017,121(50):27775 − 27787. doi: 10.1021/acs.jpcc.7b07793
    [3] 亓美丽. 碳基核壳复合材料制备及其电化学性能研究[D]. 哈尔滨: 哈尔滨理工大学, 2020.
    [4] 马静波. 锂离子电池用高容量碳基负极材料的研究[D]. 贵阳: 贵州大学, 2020.
    [5] SOLTANI S, KHANIAN N, CHOONG T S Y, et al. Recent progress in the design and synthesis of nanofibers with diverse synthetic methodologies: Characterization and potential applications[J] . New Journal of Chemistry,2020,44(23):9581 − 9606. doi: 10.1039/D0NJ01071E
    [6] HE S R, ZOU J P, CHEN L B, et al. A nanostructured Ni/T-Nb2O5@carbon nanofibers as a long-life anode material for lithium-ion batteries[J] . Rare Metals,2021,40(2):374 − 382. doi: 10.1007/s12598-020-01444-y
    [7] CHEN H, HUA Y R, LUO N J, et al. Lithiation abilities of SiC bulks and surfaces: A first-principles study[J] . The Journal of Physical Chemistry C,2020,124(13):7031 − 7038. doi: 10.1021/acs.jpcc.0c00103
    [8] ZHANG H T, XU H. Nanocrystalline silicon carbide thin film electrodes for lithium-ion batteries[J]. Solid State Ionics, 2014, 263(1): 23 − 26.
    [9] ZHANG Z H, LI H B. Sequential-template synthesis of hollowed carbon polyhedron@SiC@Si for lithium-ion battery with high capacity and electrochemical stability[J]. Applied Surface Science, 2020, 514: 1459201 − 9.
    [10] SUN X J, SHAO C Z, ZHANG F, et al. SiC nanofibers as long-life lithium-ion battery anode materials[J] . Frontiers in Chemistry,2018,6:166 − 173. doi: 10.3389/fchem.2018.00166
    [11] LIU Q, ZHU J H, ZHANG L W, et al. Recent advances in energy materials by electrospinning[J] . Renewable and Sustainable Energy Reviews,2018,81:1825 − 1858. doi: 10.1016/j.rser.2017.05.281
    [12] LI X Y, CHEN Y M, HUANG H T, et al. Electrospun carbon-based nanostructured electrodes for advanced energy storage-a review[J] . Energy Storage Materials,2016,5:58 − 92. doi: 10.1016/j.ensm.2016.06.002
    [13] PERSANO L, CAMPOSEO A, TEKMEN C, et al. Industrial upscaling of electrospinning and applications of polymer nanofibers: A review[J] . Macromolecular materials and engineering,2013,298(5):504 − 520. doi: 10.1002/mame.201200290
    [14] ZHANG Y, HU K, REN J H, et al. A sandwich-like Si/SiC/nanographite sheet as a high performance anode for lithium-ion batteries[J] . Dalton Transactions: An International Journal of Inorganic Chemistry,2019,48(47):17683 − 17690. doi: 10.1039/C9DT04228H
    [15] 高天一, 龚正良. 碳包覆硅/石墨复合材料的制备及其电化学性能[J] . 电化学,2018,24(3):253 − 261. doi: 10.13208/j.electrochem.170728
    [16] WU J, ZHANG X X, LI Z, et al. Toward high-performance capacitive potassium-ion storage: A superior anode material from silicon carbide-derived carbon with a well-developed pore structure[J] . Advanced Functional Materials,2020,30(40):20043481 − 8. doi: 10.1002/adfm.202004348
    [17] ZHANG J M, TANG J J, ZHOU X Y, et al. Optimized porous Si/SiC composite spheres as high-performance anode material for lithium-ion batteries[J] . ChemElectroChem,2019,6(2):450 − 455. doi: 10.1002/celc.201801313
    [18] 吴静. 锂离子电池硅基复合负极的制备与性能研究[D]. 武汉: 武汉理工大学, 2017.
    [19] WEI L M, HOU Z Y, WEI H. Porous sandwiched graphene/silicon anodes for lithium storage[J] . Electrochimica Acta,2017,229(17):445 − 451. doi: 10.1016/j.electacta.2017.01.173
    [20] POLAT B D, KELES O. Functionally graded Si based thin films as negative electrodes for next generation lithium ion batteries[J] . Electrochimica Acta,2016,187:293 − 299. doi: 10.1016/j.electacta.2015.11.052
    [21] WANG D S, GAO M X, PAN H G, et al. High performance amorphousSi@SiOx/C composite anode materials for Li-ion batteries derived from ballmilling and in situ carbonization[J] . Journal of Power Sources,2014,256:190 − 199. doi: 10.1016/j.jpowsour.2013.12.128
    [22] LIANG J S, WANG W J, YANG W F, et al. Facile synthesis of ceramic SiC-based nanocomposites and the superior electrochemical lithiation/delithiation performances[J] . Materials Chemistry and Physics,2020,243:122618. doi: 10.1016/j.matchemphys.2019.122618
    [23] XIA M, ZHOU Z, SU Y F, et al. Scalable synthesis SiO@C anode by fluidization thermal chemical vapor deposition in fluidized bed reactor for high-energy lithium-ion battery[J] . Applied Surface Science,2019,467:298 − 308.
    [24] NANGIR M, MASSOUDI A, TAYEBIFARD S A. Investigation of the lithium-ion depletion in the silicon-silicon carbide anode/electrolyte interface in lithium-ion battery via electrochemical impedance spectroscopy[J] . Journal of Electroanalytical Chemistry,2020,873:114385 − 114420. doi: 10.1016/j.jelechem.2020.114385
  • 加载中
图(7) / 表(2)
计量
  • 文章访问数:  309
  • HTML全文浏览量:  150
  • PDF下载量:  181
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-02-27
  • 刊出日期:  2023-06-20

目录

    /

    返回文章
    返回