留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

车用扁线电机绕组损耗分析与冷却方法设计

陈林 闫业翠

陈林, 闫业翠. 车用扁线电机绕组损耗分析与冷却方法设计[J]. 上海工程技术大学学报, 2023, 37(2): 155-163. doi: 10.12299/jsues.22-0269
引用本文: 陈林, 闫业翠. 车用扁线电机绕组损耗分析与冷却方法设计[J]. 上海工程技术大学学报, 2023, 37(2): 155-163. doi: 10.12299/jsues.22-0269
CHEN Lin, YAN Yecui. Power loss analysis and cooling design of flat wire motor winding for vehicle electrical motor[J]. Journal of Shanghai University of Engineering Science, 2023, 37(2): 155-163. doi: 10.12299/jsues.22-0269
Citation: CHEN Lin, YAN Yecui. Power loss analysis and cooling design of flat wire motor winding for vehicle electrical motor[J]. Journal of Shanghai University of Engineering Science, 2023, 37(2): 155-163. doi: 10.12299/jsues.22-0269

车用扁线电机绕组损耗分析与冷却方法设计

doi: 10.12299/jsues.22-0269
基金项目: 国家自然科学基金项目资助(51705306)
详细信息
    作者简介:

    陈林:陈 林(1998−),男,在读硕士,研究方向为新能源汽车电机设计. E-mail:17315091776@139.com

    通讯作者:

    闫业翠(1978−),女,讲师,博士,研究方向为驱动电机与控制. E-mail:yanyecui@sues.edu.cn

  • 中图分类号: TK91

Power loss analysis and cooling design of flat wire motor winding for vehicle electrical motor

  • 摘要: 车用扁线电机具有体积小、质量轻、功率密度高的特点,但随着车用电机向高速化发展,扁线电机的交流损耗变大,其温升特点不同于传统圆线电机,需要设计与之相适应的冷却方法. 首先建立新能源汽车用高速扁线永磁同步电机的二维有限元模型,分析WLTC-3工况下扁线导体的尺寸、层数以及并联支路数对电机交流损耗的影响规律,获得最优的导体尺寸和绕组连接方式. 然后在损耗分析的基础上,根据电机的温度场分布,设计了电机槽内油冷的最佳冷却方法,降低了温升,提高了电机运行的可靠性.
  • 图  1  电机二维有限元模型

    Figure  1.  Two-dimensional finite element model of motor

    图  2  扁线绕组

    Figure  2.  Flat wire winding

    图  3  绕组长宽比与转速对交流损耗的影响

    Figure  3.  Effect of winding aspect ratio and speed on AC loss

    图  4  绕组长宽比对转矩性能的影响

    Figure  4.  Influence of winding length-width ratio on output torque

    图  5  6种方式绕组损耗

    Figure  5.  Six wayers winding loss

    图  6  交流损耗占比随转速变化情况

    Figure  6.  Change of AC loss ratio with speed

    图  7  各组合转矩变化曲线

    Figure  7.  Torque change curve of each combination

    图  8  热路模型示意图

    Figure  8.  Schematic diagram of hot circuit model

    图  9  电机冷却前温度分布云图

    Figure  9.  Temperature distribution of motor before cooling

    图  10  电机冷却系统热路

    Figure  10.  Hot circuit of motor cooling system

    图  11  冷却通道位置示意图

    Figure  11.  Position diagram of cooling channels

    图  12  电机损耗随转速变化

    Figure  12.  Motor loss varies with speed

    图  13  连续瞬态热性能随转速变化

    Figure  13.  Continuous transient thermal performance varies with rotational speed

    图  14  绕组、永磁体、转子温度变化情况

    Figure  14.  Changes of winding, permanent magnet and rotor temperature

    图  15  定子温度分布云图

    Figure  15.  Temperature distribution cloud image of stator

    表  1  电机性能指标

    Table  1.   Motor performance indicators

    参数数值 参数数值
    额定转矩/(N•m)380 转子内径/mm135
    额定转速/(r•min−1)6000峰值功率/kW200
    最高转速/(r•min−1)12000效率/%96
    下载: 导出CSV

    表  2  主要结构参数

    Table  2.   Main structural parameters

    参数数值 参数数值
    定子外径/mm250 槽口高/mm0.2
    定子内径/mm175槽口宽/mm3
    槽宽/mm5.5槽肩角/(°)20
    槽深/mm25
    下载: 导出CSV

    表  3  绕组层数与并联支路数组合

    Table  3.   Numbers of winding layers and parallel branches

    编号绕组层数并联支路数
    方式142
    方式262
    方式382
    方式444
    方式564
    方式684
    下载: 导出CSV

    表  4  电机内部各温度节点

    Table  4.   Each temperature node inside motor

    温度节点部件温度节点部件
    T1机壳T2定子铁心轭部
    T3定子铁心齿部T4槽内绕组
    T5端部绕组T6气隙
    T7转子铁心T8转轴
    T9轴承T10安装板
    T11电机端部空气T12端盖
    下载: 导出CSV
  • [1] HWANG C C, LYU L Y, LIU C T, et al. Optimal design of an SPM motor using genetic algorithms and Taguchi method[J] . IEEE Transactions on Magnetics,2008,44(11):4325 − 4328. doi: 10.1109/TMAG.2008.2001526
    [2] VOLPE G, POPESCU M, MARIGNETTI F, et al. Modelling AC winding losses in a PMSM with high frequency and torque density[C]//Proceedings of 2018 IEEE Energy Conversion Congress and Exposition (ECCE). Portland: IEEE, 2018: 2300 − 2305.
    [3] 姜华. 扁铜线电机交流损耗的计算方法[J] . 微特电机,2019,47(12):32 − 34. doi: 10.3969/j.issn.1004-7018.2019.12.008
    [4] MORISCO D P, IEPURE I L, MOECKEL A. Application of a hybrid modeling approach for eddy current estimation in Hairpin windings[C]//Proceedings of 2019 IEEE International Electric Machines & Drives Conference (IEMDC). San Diego: IEEE, 2019: 2251 − 2258.
    [5] BIANCHINI C, VOGNI M, TORREGGIANI A, et al. Slot design optimization for copper losses reduction in electric machines for high speed applications[J] . Applied Sciences,2020,10(21):7425. doi: 10.3390/app10217425
    [6] ZHANG W J, JAHNS T M. Analytical model for predicting ac losses in form-wound machine windings due to stator current interactions[C]//Proceedings of 2015 IEEE International Electric Machines & Drives Conference (IEMDC). Coeur d'Alene: IEEE, 2015: 1131 − 1137.
    [7] BIANCHI N, BERARDI G. Analytical approach to design hairpin windings in high performance electric vehicle motors[C]//Proceedings of 2018 IEEE Energy Conversion Congress and Exposition (ECCE). Portland: IEEE, 2018: 4398 − 4405.
    [8] LIU C, XU Z Y, GERADA D, et al. Experimental investigation on oil spray cooling with Hairpin windings[J] . IEEE Transactions on Industrial Electronics,2020,67(9):7343 − 7353. doi: 10.1109/TIE.2019.2942563
    [9] VENTURINI G, VOLPE G, POPESCU M. Slot water jacket cooling system for traction electrical machines with Hairpin windings: Analysis and comparison[C]//Proceedings of 2021 IEEE International Electric Machines & Drives Conference (IEMDC). Hartford: IEEE, 2021.
    [10] GLAESSEL T, SEEFRIED J, FRANKE J. Challenges in the manufacturing of Hairpin windings and application opportunities of infrared lasers for the contacting process[C]//Proceedings of 2017 the 7th International Electric Drives Production Conference (EDPC). Würzburg: IEEE, 2017: 64 − 70.
    [11] SCHIEFER M, DOPPELBAUER M. Indirect slot cooling for high-power-density machines with concentrated winding[C]//Proceedings of 2015 IEEE International Electric Machines & Drives Conference (IEMDC). Coeur d'Alene: IEEE, 2015: 1820 − 1825.
    [12] LA ROCCA A, ZOU T J, MOSLEMIN M, et al. Thermal modelling of a liquid cooled traction machine with 8-layer Hairpin windings[C]//IECON 2021 the 47th Annual Conference of IEEE Industrial Electronics Society. Toronto: IEEE, 2021.
    [13] HA T, KIM D K. Study of injection method for maximizing oil-cooling performance of electric vehicle motor with Hairpin winding[J] . Energies,2021,14(3):747. doi: 10.3390/en14030747
    [14] REINAP A, ANDERSSON M, MARQUEZ-FERNANDEZ F J, et al. Performance estimation of a traction machine with direct cooled Hairpin winding[C]//Proceedings of 2019 IEEE Transportation Electrification Conference and Expo (ITEC). Detroit: IEEE, 2019.
    [15] 汪文博. 永磁同步电机的热路模型研究[D]. 杭州: 浙江大学, 2014.
  • 加载中
图(15) / 表(4)
计量
  • 文章访问数:  306
  • HTML全文浏览量:  189
  • PDF下载量:  191
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-07
  • 刊出日期:  2023-06-20

目录

    /

    返回文章
    返回