留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

MXene/聚苯胺复合块体材料制备及电磁屏蔽性能研究

郭蕊 朱美玲 任玉洁 王一丁 郑琦

郭蕊, 朱美玲, 任玉洁, 王一丁, 郑琦. MXene/聚苯胺复合块体材料制备及电磁屏蔽性能研究[J]. 上海工程技术大学学报, 2023, 37(2): 133-139. doi: 10.12299/jsues.21-0314
引用本文: 郭蕊, 朱美玲, 任玉洁, 王一丁, 郑琦. MXene/聚苯胺复合块体材料制备及电磁屏蔽性能研究[J]. 上海工程技术大学学报, 2023, 37(2): 133-139. doi: 10.12299/jsues.21-0314
GUO Rui, ZHU Meiling, REN Yujie, WANG Yiding, ZHENG Qi. Preparation and electromagnetic shielding performance study of MXene/polyaniline bulk composites[J]. Journal of Shanghai University of Engineering Science, 2023, 37(2): 133-139. doi: 10.12299/jsues.21-0314
Citation: GUO Rui, ZHU Meiling, REN Yujie, WANG Yiding, ZHENG Qi. Preparation and electromagnetic shielding performance study of MXene/polyaniline bulk composites[J]. Journal of Shanghai University of Engineering Science, 2023, 37(2): 133-139. doi: 10.12299/jsues.21-0314

MXene/聚苯胺复合块体材料制备及电磁屏蔽性能研究

doi: 10.12299/jsues.21-0314
基金项目: 上海浦江人才计划项目资助(19PJ1400200);上海市青少年科学创新实践工作站计划项目资助
详细信息
    作者简介:

    郭蕊:郭 蕊(1992−),女,博士,研究方向为电磁屏蔽/吸波材料. E-mail: 1271667290@qq.com

    通讯作者:

    郑 琦(1986−),女,副教授,博士,研究方向为晶态功能材料及电磁屏蔽/吸波材料. E-mail: qi.zheng@dhu.edu.cn

  • 中图分类号: TB34

Preparation and electromagnetic shielding performance study of MXene/polyaniline bulk composites

  • 摘要: 电磁屏蔽材料是降低电磁辐射污染的重要手段,其中导电聚合物基复合材料广受关/注. 选用MXene二维材料为功能基元,利用超声、机械搅拌和冷冻干燥的方法将MXene均匀分散于聚苯胺基体中,并通过放电等离子体烧结技术制备新型MXene/聚苯胺块体复合材料. 结果表明,MXene的高电导率和片层堆积结构可有效提高聚苯胺的电磁屏蔽性能. 当MXene质量分数为40%时,复合材料电磁屏蔽性能最优,在8.2~12.4 GHz范围内可达24 dB.
  • 图  1  40%-MXene/PANI块体样品的光学照片

    Figure  1.  Optical photos of 40%-MXene/PANI block sample

    图  2  MXene/PANI 复合材料XRD谱图

    Figure  2.  XRD spectra of MXene / PANI composites

    图  3  粉体SEM图

    Figure  3.  SEM images of powder

    图  4  块体断面SEM图

    Figure  4.  SEM images of bulk

    图  5  40%-MXene/PANI复合块体材料表面的SEM图及相应的元素映射图(EDS)图

    Figure  5.  SEM image and corresponding EDS elemental mapping of 40%-MXene/PANI bulk composite

    图  6  不同厚度条件下PANI块体和0.95 mm厚度40%-MXene/PANI复合材料块体电磁屏蔽性能变化趋势图

    Figure  6.  Variation trends of electromagnetic shielding performances of PANI bulk with different thickness and 40%-MXene/PANI at 0.95 mm

    图  7  复合不同含量MXene的MXene/PANI复合材料块体的电磁屏蔽性能变化趋势图

    Figure  7.  Electromagnetic shielding value curves of MXene /PANI bulk composites with various MXene mass fraction

    表  1  聚苯胺及复合材料的电导率

    Table  1.   Conductivity of polyaniline and composites

    性能参数PANI1%5%10%40%60%
    电导率/(S∙cm−13.812.205.185.5610.306.98
    下载: 导出CSV
  • [1] SONG Q, YE F, KONG L, et al. Graphene and MXene nanomaterials: Toward high-performance electromagnetic wave absorption in Gigahertz band range[J] . Advanced Functional Materials,2020,30(31):2000475. doi: 10.1002/adfm.202000475
    [2] CHUNG D D L. Materials for electromagnetic interference shielding[J] . Journal of Materials Engineering and Performance,2000,9(3):350 − 354. doi: 10.1361/105994900770346042
    [3] HUANGFU Y M, RUAN K P, QIU H, et al. Fabrication and investigation on the PANI/MWCNT/thermally annealed graphene aerogel/epoxy electromagnetic interference shielding nanocomposites[J] . Composites Part A: Applied Science and Manufacturing,2019,121:265 − 272. doi: 10.1016/j.compositesa.2019.03.041
    [4] ZHANG Y, PAN T, YANG Z J. Flexible polyethylene terephthalate/polyaniline composite paper with bending durability and effective electromagnetic shielding performance[J] . Chemical Engineering Journal,2020,389:124433. doi: 10.1016/j.cej.2020.124433
    [5] JIA X C, SHEN B, ZHANG L H, et al. Construction of compressible polymer/MXene composite foams for high-performance absorption-dominated electromagnetic shielding with ultra-low reflectivity[J] . Carbon,2021,173:932 − 940. doi: 10.1016/j.carbon.2020.11.036
    [6] WANG Y, GAO X, ZHANG L J, et al. Synthesis of Ti3C2/Fe3O4/PANI hierarchical architecture composite as an efficient wide-band electromagnetic absorber[J] . Applied Surface Science,2019,480(1):830 − 838. doi: 10.1016/j.apsusc.2019.03.049
    [7] MAHANTA U J, GOGOI J P, BORAH D, et al. Dielectric characterization and microwave absorption of expanded graphite integrated polyaniline multiphase nanocomposites in X-band[J] . IEEE Transactions on Dielectrics and Electrical Insulation,2019,26(1):194 − 201. doi: 10.1109/TDEI.2018.007443
    [8] YUN T, KIM H, IQBAL A, et al. Electromagnetic shielding of monolayer MXene assemblies[J] . Advanced Materials,2020,32(9):19067691 − 9.
    [9] DONG X L, ZHANG X F, HUANG H, et al. Enhanced microwave absorption in Ni/polyaniline nanocomposites by dual dielectric relaxations[J] . Applied Physics Letters,2008,92(1):0131271 − 3. doi: 10.1063/1.2830995
    [10] ZHANG L, ZHANG Z L, LYU Y Y, et al. Reduced graphene oxide aerogels with uniformly self-assembled polyaniline nanosheets for electromagnetic absorption[J] . ACS Applied Nano Materials,2020,3(6):5978 − 5986. doi: 10.1021/acsanm.0c01115
    [11] RAJAVEL K, HU Y G, ZHU P L, et al. MXene/metal oxides-Ag ternary nanostructures for electromagnetic interference shielding[J] . Chemical Engineering Journal,2020,399:1257911 − 13. doi: 10.1016/j.cej.2020.125791
    [12] ZHOU B, ZHANG Z, LI Y L, et al. Flexible, robust, and multifunctional electromagnetic interference shielding film with alternating cellulose nanofiber and MXene layers[J] . ACS Applied Materials & Interfaces,2020,12(4):4895 − 4905.
    [13] JIN X X, WANG J F, DAI L Z, et al. Flame-retardant poly(vinyl alcohol)/MXene multilayered films with outstanding electromagnetic interference shielding and thermal conductive performances[J] . Chemical Engineering Journal,2020,380:122475. doi: 10.1016/j.cej.2019.122475
    [14] SHEN B, LI Y, YI D, et al. Microcellular graphene foam for improved broadband electromagnetic interference shielding[J] . Carbon,2016,102:154 − 160. doi: 10.1016/j.carbon.2016.02.040
    [15] SHAHZAD F, ALHABEB M, HATTER C B, et al. Electromagnetic interference shielding with 2D transition metal carbides (MXenes)[J] . Science,2016,353(6304):1137 − 1140. doi: 10.1126/science.aag2421
    [16] GUO R, FAN Y C, WANG L J, et al. Core-rim structured carbide MXene/SiO2 nanoplates as an ultrathin microwave absorber[J] . Carbon,2020,169:214 − 224. doi: 10.1016/j.carbon.2020.07.054
    [17] KUMAR P. Ultrathin 2D Nanomaterials for Electromagnetic Interference Shielding[J] . Advanced Materials Interfaces,2019,6(24):1901454. doi: 10.1002/admi.201901454
    [18] MA C, CAO W T, ZHANG W, et al. Wearable, ultrathin and transparent bacterial celluloses/MXene film with Janus structure and excellent mechanical property for electromagnetic interference shielding[J] . Chemical Engineering Journal,2021,403:126438. doi: 10.1016/j.cej.2020.126438
    [19] LIANG L, HAN G, LI Y, et al. Promising Ti3C2Tx MXene/Ni chain hybrid with excellent electromagnetic wave absorption and shielding capacity[J] . ACS Applied Materials & Interfaces,2019,11(28):25399 − 25409.
    [20] IQBAL A, SHAHZAD F, HANTANASIRISAKUL K, et al. Anomalous absorption of electromagnetic waves by 2D transition metal carbonitride Ti3CNTx (MXene)[J] . Science,2020,369(6502):446 − 450. doi: 10.1126/science.aba7977
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  383
  • HTML全文浏览量:  395
  • PDF下载量:  257
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-29
  • 刊出日期:  2023-06-20

目录

    /

    返回文章
    返回