留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于等效滑模控制法的四旋翼无人机自抗扰控制器设计

胡竣耀 童东兵

胡竣耀, 童东兵. 基于等效滑模控制法的四旋翼无人机自抗扰控制器设计[J]. 上海工程技术大学学报, 2023, 37(2): 148-154. doi: 10.12299/jsues.22-0124
引用本文: 胡竣耀, 童东兵. 基于等效滑模控制法的四旋翼无人机自抗扰控制器设计[J]. 上海工程技术大学学报, 2023, 37(2): 148-154. doi: 10.12299/jsues.22-0124
HU Junyao, TONG Dongbing. Design of active disturbance rejection controller for quadrotor unmanned aerial vehicle based on equivalent sliding-mode control method[J]. Journal of Shanghai University of Engineering Science, 2023, 37(2): 148-154. doi: 10.12299/jsues.22-0124
Citation: HU Junyao, TONG Dongbing. Design of active disturbance rejection controller for quadrotor unmanned aerial vehicle based on equivalent sliding-mode control method[J]. Journal of Shanghai University of Engineering Science, 2023, 37(2): 148-154. doi: 10.12299/jsues.22-0124

基于等效滑模控制法的四旋翼无人机自抗扰控制器设计

doi: 10.12299/jsues.22-0124
基金项目: 国家自然科学基金项目资助(61673257)
详细信息
    作者简介:

    胡竣耀(1997−),男,在读硕士,研究方向为无人机、跟踪控制. E-mail:13986524282@163.com

    通讯作者:

    童东兵(1979−),男,教授,博士,研究方向为复杂网络. E-mail:tongdb@sues.edu.cn

  • 中图分类号: TP202.1

Design of active disturbance rejection controller for quadrotor unmanned aerial vehicle based on equivalent sliding-mode control method

  • 摘要: 针对带有扰动及不确定性的四旋翼无人机的稳定性问题,提出一种基于等效滑模控制法的自抗扰控制器. 首先根据机体坐标系和地面坐标系的转化,结合牛顿第二定律和牛顿−欧拉公式,构造无人机的动力学模型. 然后设计拓展状态观测器,用来恢复系统状态及对系统所有扰动和不确定性估计,以实现误差快速收敛和提高估计精度. 基于自抗扰控制器提出等效滑模控制器的概念,将控制输出分成等效控制项和切换鲁棒控制项,再与非奇异终端滑模控制相结合,避免奇异问题. 通过李雅普诺夫稳定性理论证明,设计的自抗扰控制器可以实现系统渐近稳定. 数值仿真例子验证了抗扰动性能和鲁棒性.
  • 图  1  拓展状态观测器结构框图

    Figure  1.  Structural block diagram of ESO

    图  2  滑模控制器下的位置跟踪轨迹

    Figure  2.  Position tracking trajectory under sliding-mode controller

    图  3  滑模控制器下的姿态角跟踪轨迹

    Figure  3.  Attitude angle tracking trajectory under sliding-mode controller

    图  4  滑模自抗扰控制器下的位置跟踪轨迹

    Figure  4.  Position tracking trajectory under sliding-mode active disturbance rejection controller

    图  5  滑模自抗扰控制器下的姿态跟踪轨迹

    Figure  5.  Attitude angle tracking trajectory under sliding-mode active disturbance rejection controller

  • [1] WANG F, GAO H M, WANG K, et al. Disturbance observer-based finite-time control design for a quadrotor UAV with external disturbance[J] . IEEE Transactions on Aerospace and Electronic Systems,2020,57(2):834 − 847.
    [2] AHI B, NOBAKHTI A. Hardware implementation of an ADRC controller on a gimbal mechanism[J] . IEEE Transactions on Control Systems Technology,2017,26(6):2268 − 2275.
    [3] XUE W C, BAI W Y, YANG S, et al. ADRC with adaptive extended state observer and its application to air–fuel ratio control in gasoline engines[J] . IEEE Transactions on Industrial Electronics,2015,62(9):5847 − 5857. doi: 10.1109/TIE.2015.2435004
    [4] LIU J, GAI W D, ZHANG J, et al. Nonlinear adaptive backstepping with ESO for the quadrotor trajectory tracking control in the multiple disturbances[J] . International Journal of Control, Automation and Systems,2019,17(11):2754 − 2768. doi: 10.1007/s12555-018-0909-9
    [5] SUN L, HE W, SUN C Y. Adaptive fuzzy relative pose control of spacecraft during rendezvous and proximity maneuvers[J] . IEEE Transactions on Fuzzy Systems,2018,26(6):3440 − 3451. doi: 10.1109/TFUZZ.2018.2833028
    [6] 钱前, 张爱华, 张洁. 基于ESO的全驱动船舶递归滑模动态面输出反馈控制[J] . 上海工程技术大学学报,2020,34(1):22 − 27,40. doi: 10.3969/j.issn.1009-444X.2020.01.004
    [7] 罗蕊, 师五喜, 李宝全. 受侧滑和滑移影响的移动机器人自抗扰控制[J] . 计算机应用,2018,38(5):1517 − 1522.
    [8] LIU J J, SUN M W, CHEN Z Q, et al. High AOA decoupling control for aircraft based on ADRC[J] . Journal of Systems Engineering and Electronics,2020,31(2):393 − 402. doi: 10.23919/JSEE.2020.000016
    [9] XU S S D, CHEN C C, WU Z L. Study of nonsingular fast terminal sliding-mode fault-tolerant control[J] . IEEE Transactions on Industrial Electronics,2015,62(6):3906 − 3913.
    [10] WANG F, GAO H M, WANG K, et al. Disturbance observer-based finite-time control design for a quadrotor UAV with external disturbance[J] . IEEE Transactions on Aerospace and Electronic Systems,2021,57(2):834 − 847.
    [11] YANG H J, CHENG L, XIA Y Q, et al. Active disturbance rejection attitude control for a dual closed-loop quadrotor under gust wind[J] . IEEE Transactions on Control Systems Technology,2018,26(4):1400 − 1405. doi: 10.1109/TCST.2017.2710951
    [12] LIU X, ZHANG M J, ROGERS E. Trajectory tracking control for autonomous underwater vehicles based on fuzzy re-planning of a local desired trajectory[J] . IEEE Transactions on Vehicular Technology,2019,68(12):11657 − 11667.
    [13] YOU S, KIM K, MOON J, et al. Extended state observer based robust position tracking control using nonlinear damping gain for quadrotors with external disturbance[J] . IEEE Access,2020,8:174558 − 174567. doi: 10.1109/ACCESS.2020.3025969
    [14] RAFFO G V, ORTEGA M G, RUBIO F R. An integral predictive/nonlinear H∞ control structure for a quadrotor helicopter[J] . Automatica,2010,46(1):29 − 39. doi: 10.1016/j.automatica.2009.10.018
  • 加载中
图(5)
计量
  • 文章访问数:  435
  • HTML全文浏览量:  136
  • PDF下载量:  186
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-05
  • 刊出日期:  2023-06-20

目录

    /

    返回文章
    返回