留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于改进深度森林的表面肌电手势识别方法

黄圣 茅健

黄圣, 茅健. 基于改进深度森林的表面肌电手势识别方法[J]. 上海工程技术大学学报, 2023, 37(2): 190-197. doi: 10.12299/jsues.22-0173
引用本文: 黄圣, 茅健. 基于改进深度森林的表面肌电手势识别方法[J]. 上海工程技术大学学报, 2023, 37(2): 190-197. doi: 10.12299/jsues.22-0173
HUANG Sheng, MAO Jian. Recognition method of sEMG gesture based on improved deep forest[J]. Journal of Shanghai University of Engineering Science, 2023, 37(2): 190-197. doi: 10.12299/jsues.22-0173
Citation: HUANG Sheng, MAO Jian. Recognition method of sEMG gesture based on improved deep forest[J]. Journal of Shanghai University of Engineering Science, 2023, 37(2): 190-197. doi: 10.12299/jsues.22-0173

基于改进深度森林的表面肌电手势识别方法

doi: 10.12299/jsues.22-0173
详细信息
    作者简介:

    黄圣:黄 圣(1996 −),男,在读硕士,研究方向为智能控制. E-mail: hshengp@qq.com

    通讯作者:

    茅 健(1972 −),男,教授,博士,研究方向为检测与控制、智能机器人. E-mail: jmao@sues.edu.cn

  • 中图分类号: TP181; TP391.4

Recognition method of sEMG gesture based on improved deep forest

  • 摘要: 为提高基于表面肌电图(surface Electromyo Graphy, sEMG)手势识别的准确率,提出一种改进深度森林相结合的手部运动识别方法. 将极致梯度提升(eXtreme Gradient Boosting, XGBoost)树引入深度森林模型,与随机森林和完全随机森林共同组成深度森林的级联结构. 深度森林模型在每个层次上集成3种不同的基于树的分类器,共4个决策森林,包括1个随机森林、1个极端随机森林和2个极致梯度提升树,利用不同学习算法之间的互补性来提高分类性能. 为评估该模型性能,采集4名健康受试者的表面肌电信号进行手部动作识别验证试验,并与随机森林、支持向量机、一维卷积神经网络及二维卷积神经网络等算法比较. 结果表明,提出方法对16种常用手部动作的平均识别精度为94.14%,对表面肌电信号实现了较高的分类准确率.
  • 图  1  改进后的深度森林模型

    Figure  1.  Improved deep forest model

    图  2  基于改进深度森林手部动作识别流程图

    Figure  2.  Flowchart of hand motion recognition based on improved deep forest

    图  3  不同滑动窗口的特征识别结果

    Figure  3.  Feature recognition results for different sliding windows

    图  4  不同滑动窗口的特征提取时间

    Figure  4.  Feature extraction time for different sliding windows

    表  1  本方法与其他方法识别准确率结果对比

    Table  1.   Recognition accuracy of this method compared with others %

    受试者编号GC_ForestRFSVM1D-CNN2D-CNNTextCNN
    197.4791.4489.1787.4690.4390.38
    295.3992.6993.3188.2993.4190.70
    391.6189.1487.8985.7888.5087.77
    493.0887.6886.8484.0188.9288.81
    Ave94.1490.5489.3086.3990.3289.42
    下载: 导出CSV
  • [1] 王亮, 张安元, 李佳佳, 等. 基于时频组合特征的PSO-SVM手势识别方法[J] . 长春理大学学报(自然科学版),2021,44(4):104 − 110.
    [2] 胡少康, 张道辉, 赵新刚, 等. 基于特征工程与级联森林的中风患者手部运动肌电识别方法[J] . 机器人,2021,43(5):526 − 538.
    [3] 李自由, 赵新刚, 张弼, 等. 基于表面肌电的意图识别方法在非理想条件下的研究进展[J] . 自动化学报,2021,47(5):955 − 969.
    [4] OLBRICH M, PETERSEN E, HOFFMANN C, et al. Sparse estimation for the assessment of muscular activity based on sEMG measurements[J] . IFAC PapersOnLine,2018,51(15):305 − 310. doi: 10.1016/j.ifacol.2018.09.152
    [5] 刘光达, 董梦坤, 许蓝予, 等. 手臂疲劳时表面肌电信号特征[J] . 科学技术与工程,2021,21(25):10690 − 10696. doi: 10.3969/j.issn.1671-1815.2021.25.017
    [6] MONIRI A, TERRACINA D, RODRIGUEZ-MANZANO J, et al. Real-time forecasting of sEMG features for trunk muscle fatigue using machine learning[J] . IEEE Transactions on Biomedical Engineering,2021,68(2):718 − 727.
    [7] 曹梦琳, 陈宇豪, 王珏, 等. 基于表面肌电图的人体运动意图识别研究进展[J] . 中国康复理论与实践,2021,27(5):595 − 603.
    [8] HE J Y, JIANG N. Biometric from surface electromyogram (sEMG): Feasibility of user verification and identification based on gesture recognition[J] . Frontiers in Bioengineering and Biotechnology,2020,8:58. doi: 10.3389/fbioe.2020.00058
    [9] 汤纬地. 基于表面肌电的上肢运动分析关健技术研究[D]. 合肥: 中国科学技术大学, 2021.
    [10] AI-TIMEMY A H, KHUSHABA R N, BUGMANN G, et al. Improving the performance against force variation of EMG controlled multifunctional upper-limb prostheses for transradial amputees[J] . IEEE Transactions on Neural Systems and Rehabilitation Engineering,2016,24(6):650 − 661.
    [11] DUAN F, DAI L L, CHANG W N, et al. sEMG-based identification of hand motion commands using wavelet neural network combined with discrete wavelet transform[J] . IEEE Transactions on Industrial Electronics,2016,63(3):1923 − 1934. doi: 10.1109/TIE.2015.2497212
    [12] WEI W T, DAI Q F, WONG Y K, et al. Surface-electromyography-based gesture recognition by multi-view deep learning[J] . IEEE Transactions on Bio-medical Engineering,2019,66(10):2964 − 2973. doi: 10.1109/TBME.2019.2899222
    [13] KHEZRI M, JAHED M. A neuro-fuzzy inference system for sEMG-based identification of hand motion commands[J] . IEEE Transactions on Industrial Electronics,2011,58(5):1952 − 1960. doi: 10.1109/TIE.2010.2053334
    [14] WEI W T, WONG Y K, DU Y, et al. A multi-stream convolutional neural network for sEMG-based gesture recognition in muscle computer interface[J] . Pattern Recognition Letters,2019,119:131 − 138. doi: 10.1016/j.patrec.2017.12.005
    [15] TSINGANOS P, CORNELIS B, CORNELIS J, et al. Improved gesture recognition based on sEMG signals and TCN[C]//Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing. Piscataway: IEEE, 2019: 1169 − 1173.
    [16] HEATHER D, KEVIN E, LEVI H, et al. High density electromyography data of normally limbed and trans radial amputee subjects for multifunction prosthetic control[J] . Journal of Electromyography and Kinesiology,2012,22(3):478 − 484. doi: 10.1016/j.jelekin.2011.12.012
    [17] SAMUEL O W, ZHOU H, LI X X, et al. Pattern recognition of electromyography signals based on novel time domain features for amputees' limb motion classification[J] . Computers & Electrical Engineering,2018,67:646 − 655.
    [18] HUDGINS B, PARKER P, SCOTT R N. A new strategy for multifunction myoelectric control[J] . IEEE Transactions on Bio-medical Engineering,1993,40(1):82 − 94. doi: 10.1109/10.204774
    [19] POWELL M A, THAKOR N V. A training strategy for learning pattern recognition control for myoelectric prostheses[J] . Journal of Prosthetics and Orthotics: JPO,2013,25(1):30 − 41. doi: 10.1097/JPO.0b013e31827af7c1
    [20] LEE S W, WILSON K M, LOCK B A, et al. Subject-specific myoelectric pattern classification of functional hand movements for stroke survivors[J] . IEEE Transactions on Neural Systems and Rehabilitation Engineering,2011,19(5):558 − 566. doi: 10.1109/TNSRE.2010.2079334
    [21] ZHOU Z H, FENG J. Deep forest: Towards an alternative to deep neural networks[C]//Proceedings of the 26th International Joint Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2017: 3553 − 3559.
    [22] 葛绍林, 叶剑, 何明祥. 基于深度森林的用户购买行为预测模型[J] . 计算机科学,2019,46(9):190 − 194.
    [23] LUO J L, ZHANG Z L, FU Y, et al. Time series prediction of COVID-19 transmission in America using LSTM and XGBoost algorithms[J] . Results in Physics,2021,27:104462. doi: 10.1016/j.rinp.2021.104462
    [24] PALECZEK A, GROCHALA D, RYDOSZ A. Artificial breath classification using XGBoost algorithm for diabetes detection[J] . Sensors,2021,21(12):4187. doi: 10.3390/s21124187
    [25] 李建平, 张小庆, 李莹. 基于XGBoost的低渗油田储层粒度预测[J] . 计算机系统应用,2022,31(2):241 − 245. doi: 10.15888/j.cnki.csa.008325
    [26] 邹海洋, 李振华, 邓利平. 基于改进XGBoost和随机森林的VR三维手势识别[J] . 西华师范大学学报(自然科学版),2021,42(4):426 − 431.
  • 加载中
图(4) / 表(1)
计量
  • 文章访问数:  350
  • HTML全文浏览量:  159
  • PDF下载量:  516
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-31
  • 刊出日期:  2023-06-20

目录

    /

    返回文章
    返回