Volume 37 Issue 2
Jun.  2023
Turn off MathJax
Article Contents
WANG Xin, WANG Lili, LIU Ye. Study on preparation and cycling performance of anode materials for SiC@CNFs lithium-ion battery[J]. Journal of Shanghai University of Engineering Science, 2023, 37(2): 140-147. doi: 10.12299/jsues.22-0038
Citation: WANG Xin, WANG Lili, LIU Ye. Study on preparation and cycling performance of anode materials for SiC@CNFs lithium-ion battery[J]. Journal of Shanghai University of Engineering Science, 2023, 37(2): 140-147. doi: 10.12299/jsues.22-0038

Study on preparation and cycling performance of anode materials for SiC@CNFs lithium-ion battery

doi: 10.12299/jsues.22-0038
  • Received Date: 2022-02-27
  • Publish Date: 2023-06-20
  • A SiC-enhanced carbon nanofiber composite (SiC@CNFs) structure was prepared by electrospinning technology combined with carbonization process. The results of TGA, XRD, XPS and SEM show that the mass fraction of SiC particles is 62%, and it is evenly distributed on the surface of CNFs. The lithium-ion battery anode material prepared by this structure not only retains the high electrical conductivity of CNFs, but also obtains the enhanced structural toughness of SiC. The electrochemical performance test results show that the capacity retention rate of the lithium-ion battery anode material is as high as 134.01% after 500 cycles, much higher than that of CNFs. Moreover, the electrochemical impedance value of the structure changes less and the conductivity of SiC@CNFs remains good. SiC@CNFs structures prepared by electrospinning technology serve as lithium-ion battery anode, with low production cost, controllable structure and stable performance, which is a beneficial supplement to the current battery cathode materials.
  • loading
  • [1]
    SCROSATI B, GARCHE J. Lithium batteries: Status, prospects and future[J] . Journal of Power Sources,2010,195(9):2419 − 2430. doi: 10.1016/j.jpowsour.2009.11.048
    [2]
    GONZALEZ A F, YANG N H, LIU R S. Silicon anode design for lithium-ion batteries: Progress and perspectives[J] . The Journal of Physical Chemistry C,2017,121(50):27775 − 27787. doi: 10.1021/acs.jpcc.7b07793
    [3]
    亓美丽. 碳基核壳复合材料制备及其电化学性能研究[D]. 哈尔滨: 哈尔滨理工大学, 2020.
    [4]
    马静波. 锂离子电池用高容量碳基负极材料的研究[D]. 贵阳: 贵州大学, 2020.
    [5]
    SOLTANI S, KHANIAN N, CHOONG T S Y, et al. Recent progress in the design and synthesis of nanofibers with diverse synthetic methodologies: Characterization and potential applications[J] . New Journal of Chemistry,2020,44(23):9581 − 9606. doi: 10.1039/D0NJ01071E
    [6]
    HE S R, ZOU J P, CHEN L B, et al. A nanostructured Ni/T-Nb2O5@carbon nanofibers as a long-life anode material for lithium-ion batteries[J] . Rare Metals,2021,40(2):374 − 382. doi: 10.1007/s12598-020-01444-y
    [7]
    CHEN H, HUA Y R, LUO N J, et al. Lithiation abilities of SiC bulks and surfaces: A first-principles study[J] . The Journal of Physical Chemistry C,2020,124(13):7031 − 7038. doi: 10.1021/acs.jpcc.0c00103
    [8]
    ZHANG H T, XU H. Nanocrystalline silicon carbide thin film electrodes for lithium-ion batteries[J]. Solid State Ionics, 2014, 263(1): 23 − 26.
    [9]
    ZHANG Z H, LI H B. Sequential-template synthesis of hollowed carbon polyhedron@SiC@Si for lithium-ion battery with high capacity and electrochemical stability[J]. Applied Surface Science, 2020, 514: 1459201 − 9.
    [10]
    SUN X J, SHAO C Z, ZHANG F, et al. SiC nanofibers as long-life lithium-ion battery anode materials[J] . Frontiers in Chemistry,2018,6:166 − 173. doi: 10.3389/fchem.2018.00166
    [11]
    LIU Q, ZHU J H, ZHANG L W, et al. Recent advances in energy materials by electrospinning[J] . Renewable and Sustainable Energy Reviews,2018,81:1825 − 1858. doi: 10.1016/j.rser.2017.05.281
    [12]
    LI X Y, CHEN Y M, HUANG H T, et al. Electrospun carbon-based nanostructured electrodes for advanced energy storage-a review[J] . Energy Storage Materials,2016,5:58 − 92. doi: 10.1016/j.ensm.2016.06.002
    [13]
    PERSANO L, CAMPOSEO A, TEKMEN C, et al. Industrial upscaling of electrospinning and applications of polymer nanofibers: A review[J] . Macromolecular materials and engineering,2013,298(5):504 − 520. doi: 10.1002/mame.201200290
    [14]
    ZHANG Y, HU K, REN J H, et al. A sandwich-like Si/SiC/nanographite sheet as a high performance anode for lithium-ion batteries[J] . Dalton Transactions: An International Journal of Inorganic Chemistry,2019,48(47):17683 − 17690. doi: 10.1039/C9DT04228H
    [15]
    高天一, 龚正良. 碳包覆硅/石墨复合材料的制备及其电化学性能[J] . 电化学,2018,24(3):253 − 261. doi: 10.13208/j.electrochem.170728
    [16]
    WU J, ZHANG X X, LI Z, et al. Toward high-performance capacitive potassium-ion storage: A superior anode material from silicon carbide-derived carbon with a well-developed pore structure[J] . Advanced Functional Materials,2020,30(40):20043481 − 8. doi: 10.1002/adfm.202004348
    [17]
    ZHANG J M, TANG J J, ZHOU X Y, et al. Optimized porous Si/SiC composite spheres as high-performance anode material for lithium-ion batteries[J] . ChemElectroChem,2019,6(2):450 − 455. doi: 10.1002/celc.201801313
    [18]
    吴静. 锂离子电池硅基复合负极的制备与性能研究[D]. 武汉: 武汉理工大学, 2017.
    [19]
    WEI L M, HOU Z Y, WEI H. Porous sandwiched graphene/silicon anodes for lithium storage[J] . Electrochimica Acta,2017,229(17):445 − 451. doi: 10.1016/j.electacta.2017.01.173
    [20]
    POLAT B D, KELES O. Functionally graded Si based thin films as negative electrodes for next generation lithium ion batteries[J] . Electrochimica Acta,2016,187:293 − 299. doi: 10.1016/j.electacta.2015.11.052
    [21]
    WANG D S, GAO M X, PAN H G, et al. High performance amorphousSi@SiOx/C composite anode materials for Li-ion batteries derived from ballmilling and in situ carbonization[J] . Journal of Power Sources,2014,256:190 − 199. doi: 10.1016/j.jpowsour.2013.12.128
    [22]
    LIANG J S, WANG W J, YANG W F, et al. Facile synthesis of ceramic SiC-based nanocomposites and the superior electrochemical lithiation/delithiation performances[J] . Materials Chemistry and Physics,2020,243:122618. doi: 10.1016/j.matchemphys.2019.122618
    [23]
    XIA M, ZHOU Z, SU Y F, et al. Scalable synthesis SiO@C anode by fluidization thermal chemical vapor deposition in fluidized bed reactor for high-energy lithium-ion battery[J] . Applied Surface Science,2019,467:298 − 308.
    [24]
    NANGIR M, MASSOUDI A, TAYEBIFARD S A. Investigation of the lithium-ion depletion in the silicon-silicon carbide anode/electrolyte interface in lithium-ion battery via electrochemical impedance spectroscopy[J] . Journal of Electroanalytical Chemistry,2020,873:114385 − 114420. doi: 10.1016/j.jelechem.2020.114385
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(2)

    Article Metrics

    Article views (357) PDF downloads(228) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return