Citation: | WANG Xin, WANG Lili, LIU Ye. Study on preparation and cycling performance of anode materials for SiC@CNFs lithium-ion battery[J]. Journal of Shanghai University of Engineering Science, 2023, 37(2): 140-147. doi: 10.12299/jsues.22-0038 |
[1] |
SCROSATI B, GARCHE J. Lithium batteries: Status, prospects and future[J] . Journal of Power Sources,2010,195(9):2419 − 2430. doi: 10.1016/j.jpowsour.2009.11.048
|
[2] |
GONZALEZ A F, YANG N H, LIU R S. Silicon anode design for lithium-ion batteries: Progress and perspectives[J] . The Journal of Physical Chemistry C,2017,121(50):27775 − 27787. doi: 10.1021/acs.jpcc.7b07793
|
[3] |
亓美丽. 碳基核壳复合材料制备及其电化学性能研究[D]. 哈尔滨: 哈尔滨理工大学, 2020.
|
[4] |
马静波. 锂离子电池用高容量碳基负极材料的研究[D]. 贵阳: 贵州大学, 2020.
|
[5] |
SOLTANI S, KHANIAN N, CHOONG T S Y, et al. Recent progress in the design and synthesis of nanofibers with diverse synthetic methodologies: Characterization and potential applications[J] . New Journal of Chemistry,2020,44(23):9581 − 9606. doi: 10.1039/D0NJ01071E
|
[6] |
HE S R, ZOU J P, CHEN L B, et al. A nanostructured Ni/T-Nb2O5@carbon nanofibers as a long-life anode material for lithium-ion batteries[J] . Rare Metals,2021,40(2):374 − 382. doi: 10.1007/s12598-020-01444-y
|
[7] |
CHEN H, HUA Y R, LUO N J, et al. Lithiation abilities of SiC bulks and surfaces: A first-principles study[J] . The Journal of Physical Chemistry C,2020,124(13):7031 − 7038. doi: 10.1021/acs.jpcc.0c00103
|
[8] |
ZHANG H T, XU H. Nanocrystalline silicon carbide thin film electrodes for lithium-ion batteries[J]. Solid State Ionics, 2014, 263(1): 23 − 26.
|
[9] |
ZHANG Z H, LI H B. Sequential-template synthesis of hollowed carbon polyhedron@SiC@Si for lithium-ion battery with high capacity and electrochemical stability[J]. Applied Surface Science, 2020, 514: 1459201 − 9.
|
[10] |
SUN X J, SHAO C Z, ZHANG F, et al. SiC nanofibers as long-life lithium-ion battery anode materials[J] . Frontiers in Chemistry,2018,6:166 − 173. doi: 10.3389/fchem.2018.00166
|
[11] |
LIU Q, ZHU J H, ZHANG L W, et al. Recent advances in energy materials by electrospinning[J] . Renewable and Sustainable Energy Reviews,2018,81:1825 − 1858. doi: 10.1016/j.rser.2017.05.281
|
[12] |
LI X Y, CHEN Y M, HUANG H T, et al. Electrospun carbon-based nanostructured electrodes for advanced energy storage-a review[J] . Energy Storage Materials,2016,5:58 − 92. doi: 10.1016/j.ensm.2016.06.002
|
[13] |
PERSANO L, CAMPOSEO A, TEKMEN C, et al. Industrial upscaling of electrospinning and applications of polymer nanofibers: A review[J] . Macromolecular materials and engineering,2013,298(5):504 − 520. doi: 10.1002/mame.201200290
|
[14] |
ZHANG Y, HU K, REN J H, et al. A sandwich-like Si/SiC/nanographite sheet as a high performance anode for lithium-ion batteries[J] . Dalton Transactions: An International Journal of Inorganic Chemistry,2019,48(47):17683 − 17690. doi: 10.1039/C9DT04228H
|
[15] |
高天一, 龚正良. 碳包覆硅/石墨复合材料的制备及其电化学性能[J] . 电化学,2018,24(3):253 − 261. doi: 10.13208/j.electrochem.170728
|
[16] |
WU J, ZHANG X X, LI Z, et al. Toward high-performance capacitive potassium-ion storage: A superior anode material from silicon carbide-derived carbon with a well-developed pore structure[J] . Advanced Functional Materials,2020,30(40):20043481 − 8. doi: 10.1002/adfm.202004348
|
[17] |
ZHANG J M, TANG J J, ZHOU X Y, et al. Optimized porous Si/SiC composite spheres as high-performance anode material for lithium-ion batteries[J] . ChemElectroChem,2019,6(2):450 − 455. doi: 10.1002/celc.201801313
|
[18] |
吴静. 锂离子电池硅基复合负极的制备与性能研究[D]. 武汉: 武汉理工大学, 2017.
|
[19] |
WEI L M, HOU Z Y, WEI H. Porous sandwiched graphene/silicon anodes for lithium storage[J] . Electrochimica Acta,2017,229(17):445 − 451. doi: 10.1016/j.electacta.2017.01.173
|
[20] |
POLAT B D, KELES O. Functionally graded Si based thin films as negative electrodes for next generation lithium ion batteries[J] . Electrochimica Acta,2016,187:293 − 299. doi: 10.1016/j.electacta.2015.11.052
|
[21] |
WANG D S, GAO M X, PAN H G, et al. High performance amorphousSi@SiOx/C composite anode materials for Li-ion batteries derived from ballmilling and in situ carbonization[J] . Journal of Power Sources,2014,256:190 − 199. doi: 10.1016/j.jpowsour.2013.12.128
|
[22] |
LIANG J S, WANG W J, YANG W F, et al. Facile synthesis of ceramic SiC-based nanocomposites and the superior electrochemical lithiation/delithiation performances[J] . Materials Chemistry and Physics,2020,243:122618. doi: 10.1016/j.matchemphys.2019.122618
|
[23] |
XIA M, ZHOU Z, SU Y F, et al. Scalable synthesis SiO@C anode by fluidization thermal chemical vapor deposition in fluidized bed reactor for high-energy lithium-ion battery[J] . Applied Surface Science,2019,467:298 − 308.
|
[24] |
NANGIR M, MASSOUDI A, TAYEBIFARD S A. Investigation of the lithium-ion depletion in the silicon-silicon carbide anode/electrolyte interface in lithium-ion battery via electrochemical impedance spectroscopy[J] . Journal of Electroanalytical Chemistry,2020,873:114385 − 114420. doi: 10.1016/j.jelechem.2020.114385
|
[1] | CHEN Yinjie, LI Li, CAI Xinyu, ZHANG Wenjuan, ZHANG Wenqi, LI Guanghui, RAO Pinhua. Hydrothermal synthesis of MnO2/SiC activated peroxymonosulfate for degradation of methylene blue[J]. Journal of Shanghai University of Engineering Science, 2024, 38(2): 139-145. doi: 10.12299/jsues.23-0172 |
[2] | WANG Yanhong, FU Gangzhan. Total cost of ownership of fuel cell vehicles in China under carbon neutral target scenario[J]. Journal of Shanghai University of Engineering Science, 2022, 36(3): 249-260. doi: 10.12299/jsues.22-0029 |
[3] | LAN Xiang, ZHAO Xiaoyu, ZHANG Xin, CHEN Lingli. Optimization Design for Automobile Rear Seat of Carbon Fiber Reinforced Composite[J]. Journal of Shanghai University of Engineering Science, 2019, 33(4): 323-329. doi: 10.3969/j.issn.1009-444X.2019.04.005 |
[4] | ZOU Yun, MA Binghui, XU Peiquan. Microstructure and Wear Resistance of Co-Based Cladding Layer Reinforced by Nano-Carbide[J]. Journal of Shanghai University of Engineering Science, 2019, 33(3): 203-208. doi: 10.3969/j.issn.1009-444X.2019.03.003 |
[5] | GAO Chen, HUANG Bixiong, YAN Xiao, WANG Ying. Study on Low Temperature Characteristics of Lithium Titanate Batteries[J]. Journal of Shanghai University of Engineering Science, 2019, 33(1): 21-25. doi: 10.3969/j.issn.1009-444X.2019.01.004 |
[6] | LIANG Xin, ZHANG Hengyun. Experimental Study on Thermal Characteristics of Lithium-Ion Battery During Discharge[J]. Journal of Shanghai University of Engineering Science, 2019, 33(4): 304-310. doi: 10.3969/j.issn.1009-444X.2019.04.002 |
[7] | SUI Yang, ZHANG Hengyun, WU Qingyu, DENG Yuchen, XU Shen. Thermal Characteristics Analysis of Lithium-Ion Battery Based on Phase Change Material-Foam Copper-Fin Composite Structure[J]. Journal of Shanghai University of Engineering Science, 2018, 32(3): 193-200. doi: 10.3969/j.issn.1009-444X.2018.03.001 |
[8] | SUN Jiayi, WANG Wei, YU Dan, JU Anqi. Preparation and Electrochemical Performance Study of CNFs/Co3O4 Composites[J]. Journal of Shanghai University of Engineering Science, 2018, 32(4): 295-299,318. doi: 10.3969/j.issn.1009-444X.2018.04.001 |
[9] | JIAN Xuemei. Research Progress on Cathode Material Li3V2 (PO4)3 with Core-Shell Structure for Li-Ion Battery[J]. Journal of Shanghai University of Engineering Science, 2017, 31(1): 25-29. doi: 10.3969/j.issn.1009-444X.2017.01.006 |
[10] | HUANG Tianzhu, MA Qihua, HE Yi, WU Po, LI Jinhong. Development of Carbon Fiber Composite Energy Saving Vehicle Body[J]. Journal of Shanghai University of Engineering Science, 2016, 30(1): 51-55. doi: 10.3969/j.issn.1009-444X.2016.01.011 |
[11] | HUANG Mingjun, ZHAI Jianguang. Carbon Fiber-Reinforced Resin Composite Preparation and Its Properties[J]. Journal of Shanghai University of Engineering Science, 2015, 29(4): 320-322,352. doi: 10.3969/j.issn.1009-444X.2015.04.008 |
[12] | YANG Yayun, LIN Wensong, YAN Xuezeng, WU Xiao. Research Status of Fiber-Reinforced Reaction Bonded Silicon Carbide Matrix Composites[J]. Journal of Shanghai University of Engineering Science, 2015, 29(3): 253-257. doi: 10.3969/j.issn.1009-444X.2015.03.014 |
[13] | YANG Zhengwei, CHENG Zhencai, LU Yugao, YANG Qi. Study on Carbon Fibers/Cu Composite Coating Material[J]. Journal of Shanghai University of Engineering Science, 2013, 27(2): 151-153,156. doi: 10.3969/j.issn.1009-444X.2013.02.013 |
[14] | LI Ge. Electrochemical Property of High Temperature Annealed Nb2O5 and Its Application to Lithium-Ion Battery[J]. Journal of Shanghai University of Engineering Science, 2013, 27(1): 56-59. doi: 10.3969/j.issn.1009-444X.2013.01.013 |
[15] | FU Yunlong, GONG Hongying, SONG Kexing. Microstructure and Properties of Dispersion Strengthened Copper Matrix Composites by Nanoparticles[J]. Journal of Shanghai University of Engineering Science, 2012, 26(3): 259-262. doi: 10.3969/j.issn.1009-444X.2012.03.016 |
[16] | JI Tao, WU Tao-tao, SUN Shu-xin, SUN Peng, LIU Ye, MA Chun-wei. Simulation of One-Dimensional Photonic Crystal for SiC/SiNx[J]. Journal of Shanghai University of Engineering Science, 2012, 26(1): 50-52. doi: 10.3969/j.issn.1009-444X.2012.01.012 |
[17] | JIANG Zi-wang, LIN Wen-song, WANG Jie-li, XU Hao. Research Progress of SiC Gel-Casting Slurry[J]. Journal of Shanghai University of Engineering Science, 2012, 26(2): 120-124. doi: 10.3969/j.issn.1009-444X.2012.02.006 |
[18] | XIE Zhi-gang, ZHANG Xiao-xun, LU Li-ming. FE Analysis of Optimal Hybrid Ratio for Hoop-Wrapped Carbon/Glass Filament Winding Composite Cylinder[J]. Journal of Shanghai University of Engineering Science, 2011, 25(4): 304-308. doi: 10.3969/j.issn.1009-444X.2011.04.005 |
[19] | WANG Jin-Cheng, CHEN Yue-hui, JIN Qi-qi, ChEN Rui-sheng. Research Progress of Rubber/Montmorillonite Nanocomposites[J]. Journal of Shanghai University of Engineering Science, 2005, 19(2): 133-139. doi: 10.3969/j.issn.1009-444X.2005.02.010 |
[20] | Application of Nanometer Materials in Textile Functional Finishes[J]. Journal of Shanghai University of Engineering Science, 2003, 17(3): 221-224. doi: 10.3969/j.issn.1009-444X.2003.03.014 |