Volume 37 Issue 2
Jun.  2023
Turn off MathJax
Article Contents
WU Xinyu, ZHANG Meihua, ZHANG Liqiang. Optimization of real-time assembly man-hours scheduling based on digital twin[J]. Journal of Shanghai University of Engineering Science, 2023, 37(2): 198-206. doi: 10.12299/jsues.22-0157
Citation: WU Xinyu, ZHANG Meihua, ZHANG Liqiang. Optimization of real-time assembly man-hours scheduling based on digital twin[J]. Journal of Shanghai University of Engineering Science, 2023, 37(2): 198-206. doi: 10.12299/jsues.22-0157

Optimization of real-time assembly man-hours scheduling based on digital twin

doi: 10.12299/jsues.22-0157
  • Received Date: 2022-05-17
  • Publish Date: 2023-06-20
  • Based on digital twin, a real-time assembly man-hours workshop scheduling model was proposed, considering the uncertainty of assembly man-hours in the process of product customization and frequent dynamic disturbances in the assembly workshop. The overall architecture of assembly workshop scheduling based on digital twin was constructed. Radio frequency identification (RFID) technology was used to collect real-time working hours data of physical assembly workshops, and the real-time assembly working hours were processed by using the improved Rete algorithm. A mathematical model of assembly workshop scheduling based on real-time assembly man-hours was established, and an improved artificial fish swarm-taboo algorithm was used to solve the model, so as to realize the scheduling optimization of the real-time assembly man-hours workshop. The empirical result shows that the model algorithm has certain feasibility and superiority in real-time assembly man-hours workshop scheduling.
  • loading
  • [1]
    陈宇轩. 工时不确定条件下基于改进遗传算法的柔性作业车间调度问题的区间数求解方法[J] . 机械工程师,2018(1):79 − 81. doi: 10.3969/j.issn.1002-2333.2018.01.025
    [2]
    JAMROUS T, CHIEN C F, GEN M, et al. Hybrid particle swarm optimization combined with genetic operators for flexible job-shop scheduling under uncertain processing time for semiconductor manufacturing[J] . IEEE Transactions on Semiconductor Manufacturing,2018,31(1):32 − 41. doi: 10.1109/TSM.2017.2758380
    [3]
    郭映丹, 王贺, 冯翰信, 等. 成组条件下的研制批产混合调度方法[J] . 浙江大学学报(工学版),2016,50(11):2224 − 2230.

    GUO Y T, WANG H, FENG H X, et al. Trial production and batch production mixed scheduling method in group manufacturing[J]. Journal of Zhejiang University, 2016, 50(11): 2224-2230.
    [4]
    郭钧, 钟精诚, 杜百岗, 等. 考虑模糊作业时间的再制造加工车间多目标调度方法[J] . 控制与决策,2020(6):1497 − 1504. doi: 10.13195/j.kzyjc.2018.1187
    [5]
    朱传军, 邱文, 朱孟周, 等. 随机工时下的多目标柔性作业车间鲁棒调度问题[J] . 中国机械工程,2016,27(12):1667 − 1672. doi: 10.3969/j.issn.1004-132X.2016.12.020
    [6]
    常建娥, 李帅, 莫易敏, 等. 基于装配相似性与灰色模型的汽车装配工时预测[J] . 工业工程,2018,21(3):87 − 92. doi: 10.3969/j.issn.1007-7375.2018.03.011
    [7]
    刘子文, 刘检华, 程益, 等. 基于文本挖掘与神经网络的复杂产品装配工时估算方法[J] . 机械工程学报,2021,57(15):199 − 210.
    [8]
    WU C C, GUPTA J N D, CHENG S R, et al. Robust scheduling for a two-stage assembly shop with scenario-dependent processing times[J] . International Journal of Production Research,2021, 59(17):5372 − 16.
    [9]
    FERONE D, HATAMI S, GONEALZE‐NEIRA E M, et al. A biased‐randomized iterated local search for the distributed assembly permutation flow‐shop problem[J] . International Transactions in Operational Research,2020,27(3):1 − 24.
    [10]
    SHEIKH S, KOMAKI G M, KAYVANFAR V, et al. Multi-stage assembly flow shop with setup time and release time[J] . Operations Research Perspectives,2019,6:1 − 15.
    [11]
    FANG Y L, PENG C, LOU P, et al. Digital-twin based job shop scheduling towards smart manufacturing[J] . IEEE Transactions on Industrial Informatics,2019,15(12):6425 − 6435. doi: 10.1109/TII.2019.2938572
    [12]
    ZHANG J, DENG T M, JIANG H F, et al. Bi-level dynamic scheduling architecture based on service unit digital twin agents[J] . Journal of Manufacturing Systems,2021,60:59 − 79. doi: 10.1016/j.jmsy.2021.05.007
    [13]
    曹远冲, 熊辉, 庄存波, 等. 基于数字孪生的复杂产品离散装配车间动态调度[J] . 计算机集成制造系统,2021,27(2):557 − 568.
    [14]
    VILLALONGA A, NEGRI E, BISCARDO G, et al. A decision-making framework for dynamic scheduling of cyber-physical production systems based on digital twins[J] . Annual Reviews in Control,2021,51:351 − 373.
    [15]
    陶飞, 刘蔚然, 张萌, 等. 数字孪生五维模型及十大领域应用[J] . 计算机集成制造系统,2019,25(1):1 − 18. doi: 10.13196/j.cims.2019.01.001
    [16]
    曹伟, 江平宇, 江开勇, 等. 基于RFID技术的离散制造车间实时数据采集与可视化监控方法[J] . 计算机集成制造系统,2017,23(2):273 − 284. doi: 10.13196/j.cims.2017.02.006
    [17]
    宫敬程, 庄存波, 刘检华, 等. 基于磷虾群−禁忌算法的复杂产品装配调度问题[J] . 现代制造工程,2020(9):32 − 39. doi: 10.16731/j.cnki.1671-3133.2020.09.005
    [18]
    KAHRAMAN C, ENGIN O, HSAN K, et al. An application of effective genetic algorithms for solving hybrid flow shop scheduling problems[J] . International Journal of Computational Intelligence Systems,2008,1(2):134 − 147. doi: 10.1080/18756891.2008.9727611
    [19]
    BAHROLOLOUMA A, NEZAMABADI-POUR H, BAHROLOLOUM H, et al. A prototype classifier based on gravitational search algorithm[J] . Applied Soft Computing,2012,12(2):819 − 825. doi: 10.1016/j.asoc.2011.10.008
    [20]
    庄存波, 熊辉, 刘检华, 等. 一种改进离散磷虾群的复杂产品装配调度算法[J] . 兵工学报,2018,39(8):1590 − 1600. doi: 10.3969/j.issn.1000-1093.2018.08.016
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(4)

    Article Metrics

    Article views (205) PDF downloads(62) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return