Citation: | WU Xinyu, ZHANG Meihua, ZHANG Liqiang. Optimization of real-time assembly man-hours scheduling based on digital twin[J]. Journal of Shanghai University of Engineering Science, 2023, 37(2): 198-206. doi: 10.12299/jsues.22-0157 |
[1] |
陈宇轩. 工时不确定条件下基于改进遗传算法的柔性作业车间调度问题的区间数求解方法[J] . 机械工程师,2018(1):79 − 81. doi: 10.3969/j.issn.1002-2333.2018.01.025
|
[2] |
JAMROUS T, CHIEN C F, GEN M, et al. Hybrid particle swarm optimization combined with genetic operators for flexible job-shop scheduling under uncertain processing time for semiconductor manufacturing[J] . IEEE Transactions on Semiconductor Manufacturing,2018,31(1):32 − 41. doi: 10.1109/TSM.2017.2758380
|
[3] |
郭映丹, 王贺, 冯翰信, 等. 成组条件下的研制批产混合调度方法[J] . 浙江大学学报(工学版),2016,50(11):2224 − 2230.
GUO Y T, WANG H, FENG H X, et al. Trial production and batch production mixed scheduling method in group manufacturing[J]. Journal of Zhejiang University, 2016, 50(11): 2224-2230.
|
[4] |
郭钧, 钟精诚, 杜百岗, 等. 考虑模糊作业时间的再制造加工车间多目标调度方法[J] . 控制与决策,2020(6):1497 − 1504. doi: 10.13195/j.kzyjc.2018.1187
|
[5] |
朱传军, 邱文, 朱孟周, 等. 随机工时下的多目标柔性作业车间鲁棒调度问题[J] . 中国机械工程,2016,27(12):1667 − 1672. doi: 10.3969/j.issn.1004-132X.2016.12.020
|
[6] |
常建娥, 李帅, 莫易敏, 等. 基于装配相似性与灰色模型的汽车装配工时预测[J] . 工业工程,2018,21(3):87 − 92. doi: 10.3969/j.issn.1007-7375.2018.03.011
|
[7] |
刘子文, 刘检华, 程益, 等. 基于文本挖掘与神经网络的复杂产品装配工时估算方法[J] . 机械工程学报,2021,57(15):199 − 210.
|
[8] |
WU C C, GUPTA J N D, CHENG S R, et al. Robust scheduling for a two-stage assembly shop with scenario-dependent processing times[J] . International Journal of Production Research,2021, 59(17):5372 − 16.
|
[9] |
FERONE D, HATAMI S, GONEALZE‐NEIRA E M, et al. A biased‐randomized iterated local search for the distributed assembly permutation flow‐shop problem[J] . International Transactions in Operational Research,2020,27(3):1 − 24.
|
[10] |
SHEIKH S, KOMAKI G M, KAYVANFAR V, et al. Multi-stage assembly flow shop with setup time and release time[J] . Operations Research Perspectives,2019,6:1 − 15.
|
[11] |
FANG Y L, PENG C, LOU P, et al. Digital-twin based job shop scheduling towards smart manufacturing[J] . IEEE Transactions on Industrial Informatics,2019,15(12):6425 − 6435. doi: 10.1109/TII.2019.2938572
|
[12] |
ZHANG J, DENG T M, JIANG H F, et al. Bi-level dynamic scheduling architecture based on service unit digital twin agents[J] . Journal of Manufacturing Systems,2021,60:59 − 79. doi: 10.1016/j.jmsy.2021.05.007
|
[13] |
曹远冲, 熊辉, 庄存波, 等. 基于数字孪生的复杂产品离散装配车间动态调度[J] . 计算机集成制造系统,2021,27(2):557 − 568.
|
[14] |
VILLALONGA A, NEGRI E, BISCARDO G, et al. A decision-making framework for dynamic scheduling of cyber-physical production systems based on digital twins[J] . Annual Reviews in Control,2021,51:351 − 373.
|
[15] |
陶飞, 刘蔚然, 张萌, 等. 数字孪生五维模型及十大领域应用[J] . 计算机集成制造系统,2019,25(1):1 − 18. doi: 10.13196/j.cims.2019.01.001
|
[16] |
曹伟, 江平宇, 江开勇, 等. 基于RFID技术的离散制造车间实时数据采集与可视化监控方法[J] . 计算机集成制造系统,2017,23(2):273 − 284. doi: 10.13196/j.cims.2017.02.006
|
[17] |
宫敬程, 庄存波, 刘检华, 等. 基于磷虾群−禁忌算法的复杂产品装配调度问题[J] . 现代制造工程,2020(9):32 − 39. doi: 10.16731/j.cnki.1671-3133.2020.09.005
|
[18] |
KAHRAMAN C, ENGIN O, HSAN K, et al. An application of effective genetic algorithms for solving hybrid flow shop scheduling problems[J] . International Journal of Computational Intelligence Systems,2008,1(2):134 − 147. doi: 10.1080/18756891.2008.9727611
|
[19] |
BAHROLOLOUMA A, NEZAMABADI-POUR H, BAHROLOLOUM H, et al. A prototype classifier based on gravitational search algorithm[J] . Applied Soft Computing,2012,12(2):819 − 825. doi: 10.1016/j.asoc.2011.10.008
|
[20] |
庄存波, 熊辉, 刘检华, 等. 一种改进离散磷虾群的复杂产品装配调度算法[J] . 兵工学报,2018,39(8):1590 − 1600. doi: 10.3969/j.issn.1000-1093.2018.08.016
|