Volume 37 Issue 2
Jun.  2023
Turn off MathJax
Article Contents
HUANG Sheng, MAO Jian. Recognition method of sEMG gesture based on improved deep forest[J]. Journal of Shanghai University of Engineering Science, 2023, 37(2): 190-197. doi: 10.12299/jsues.22-0173
Citation: HUANG Sheng, MAO Jian. Recognition method of sEMG gesture based on improved deep forest[J]. Journal of Shanghai University of Engineering Science, 2023, 37(2): 190-197. doi: 10.12299/jsues.22-0173

Recognition method of sEMG gesture based on improved deep forest

doi: 10.12299/jsues.22-0173
  • Received Date: 2022-05-31
  • Publish Date: 2023-06-20
  • In order to improve the accuracy of gesture recognition based on surface electromyography (sEMG), an improved deep forest combined hand motion recognition method was proposed. The extreme gradient boosting (XGBoost) tree was introduced into the deep forest model to form the cascade structure of deep forest together with the random forest and the complete random forest. The deep forest model integrates three different tree-based classifiers at each level, a total of four decision forests including a random forest, an extreme random forest and two extreme gradient boosting trees. The classification performance was improved by using the complementarity between different learning algorithms. In order to evaluate the performance of the model, the sEMG signals of 4 healthy subjects were collected for the verification experiment of hand action recognition, and compared with random forest, support vector machine, one-dimensional and two-dimensional convolutional neural networks algorithms. The result shows that the average recognition accuracy of the method for 16 commonly used hand actions is 94.14%, and the classification accuracy of sEMG signals is high.
  • loading
  • [1]
    王亮, 张安元, 李佳佳, 等. 基于时频组合特征的PSO-SVM手势识别方法[J] . 长春理大学学报(自然科学版),2021,44(4):104 − 110.
    [2]
    胡少康, 张道辉, 赵新刚, 等. 基于特征工程与级联森林的中风患者手部运动肌电识别方法[J] . 机器人,2021,43(5):526 − 538.
    [3]
    李自由, 赵新刚, 张弼, 等. 基于表面肌电的意图识别方法在非理想条件下的研究进展[J] . 自动化学报,2021,47(5):955 − 969.
    [4]
    OLBRICH M, PETERSEN E, HOFFMANN C, et al. Sparse estimation for the assessment of muscular activity based on sEMG measurements[J] . IFAC PapersOnLine,2018,51(15):305 − 310. doi: 10.1016/j.ifacol.2018.09.152
    [5]
    刘光达, 董梦坤, 许蓝予, 等. 手臂疲劳时表面肌电信号特征[J] . 科学技术与工程,2021,21(25):10690 − 10696. doi: 10.3969/j.issn.1671-1815.2021.25.017
    [6]
    MONIRI A, TERRACINA D, RODRIGUEZ-MANZANO J, et al. Real-time forecasting of sEMG features for trunk muscle fatigue using machine learning[J] . IEEE Transactions on Biomedical Engineering,2021,68(2):718 − 727.
    [7]
    曹梦琳, 陈宇豪, 王珏, 等. 基于表面肌电图的人体运动意图识别研究进展[J] . 中国康复理论与实践,2021,27(5):595 − 603.
    [8]
    HE J Y, JIANG N. Biometric from surface electromyogram (sEMG): Feasibility of user verification and identification based on gesture recognition[J] . Frontiers in Bioengineering and Biotechnology,2020,8:58. doi: 10.3389/fbioe.2020.00058
    [9]
    汤纬地. 基于表面肌电的上肢运动分析关健技术研究[D]. 合肥: 中国科学技术大学, 2021.
    [10]
    AI-TIMEMY A H, KHUSHABA R N, BUGMANN G, et al. Improving the performance against force variation of EMG controlled multifunctional upper-limb prostheses for transradial amputees[J] . IEEE Transactions on Neural Systems and Rehabilitation Engineering,2016,24(6):650 − 661.
    [11]
    DUAN F, DAI L L, CHANG W N, et al. sEMG-based identification of hand motion commands using wavelet neural network combined with discrete wavelet transform[J] . IEEE Transactions on Industrial Electronics,2016,63(3):1923 − 1934. doi: 10.1109/TIE.2015.2497212
    [12]
    WEI W T, DAI Q F, WONG Y K, et al. Surface-electromyography-based gesture recognition by multi-view deep learning[J] . IEEE Transactions on Bio-medical Engineering,2019,66(10):2964 − 2973. doi: 10.1109/TBME.2019.2899222
    [13]
    KHEZRI M, JAHED M. A neuro-fuzzy inference system for sEMG-based identification of hand motion commands[J] . IEEE Transactions on Industrial Electronics,2011,58(5):1952 − 1960. doi: 10.1109/TIE.2010.2053334
    [14]
    WEI W T, WONG Y K, DU Y, et al. A multi-stream convolutional neural network for sEMG-based gesture recognition in muscle computer interface[J] . Pattern Recognition Letters,2019,119:131 − 138. doi: 10.1016/j.patrec.2017.12.005
    [15]
    TSINGANOS P, CORNELIS B, CORNELIS J, et al. Improved gesture recognition based on sEMG signals and TCN[C]//Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing. Piscataway: IEEE, 2019: 1169 − 1173.
    [16]
    HEATHER D, KEVIN E, LEVI H, et al. High density electromyography data of normally limbed and trans radial amputee subjects for multifunction prosthetic control[J] . Journal of Electromyography and Kinesiology,2012,22(3):478 − 484. doi: 10.1016/j.jelekin.2011.12.012
    [17]
    SAMUEL O W, ZHOU H, LI X X, et al. Pattern recognition of electromyography signals based on novel time domain features for amputees' limb motion classification[J] . Computers & Electrical Engineering,2018,67:646 − 655.
    [18]
    HUDGINS B, PARKER P, SCOTT R N. A new strategy for multifunction myoelectric control[J] . IEEE Transactions on Bio-medical Engineering,1993,40(1):82 − 94. doi: 10.1109/10.204774
    [19]
    POWELL M A, THAKOR N V. A training strategy for learning pattern recognition control for myoelectric prostheses[J] . Journal of Prosthetics and Orthotics: JPO,2013,25(1):30 − 41. doi: 10.1097/JPO.0b013e31827af7c1
    [20]
    LEE S W, WILSON K M, LOCK B A, et al. Subject-specific myoelectric pattern classification of functional hand movements for stroke survivors[J] . IEEE Transactions on Neural Systems and Rehabilitation Engineering,2011,19(5):558 − 566. doi: 10.1109/TNSRE.2010.2079334
    [21]
    ZHOU Z H, FENG J. Deep forest: Towards an alternative to deep neural networks[C]//Proceedings of the 26th International Joint Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2017: 3553 − 3559.
    [22]
    葛绍林, 叶剑, 何明祥. 基于深度森林的用户购买行为预测模型[J] . 计算机科学,2019,46(9):190 − 194.
    [23]
    LUO J L, ZHANG Z L, FU Y, et al. Time series prediction of COVID-19 transmission in America using LSTM and XGBoost algorithms[J] . Results in Physics,2021,27:104462. doi: 10.1016/j.rinp.2021.104462
    [24]
    PALECZEK A, GROCHALA D, RYDOSZ A. Artificial breath classification using XGBoost algorithm for diabetes detection[J] . Sensors,2021,21(12):4187. doi: 10.3390/s21124187
    [25]
    李建平, 张小庆, 李莹. 基于XGBoost的低渗油田储层粒度预测[J] . 计算机系统应用,2022,31(2):241 − 245. doi: 10.15888/j.cnki.csa.008325
    [26]
    邹海洋, 李振华, 邓利平. 基于改进XGBoost和随机森林的VR三维手势识别[J] . 西华师范大学学报(自然科学版),2021,42(4):426 − 431.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)  / Tables(1)

    Article Metrics

    Article views (385) PDF downloads(574) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return