Citation: | HUANG Sheng, MAO Jian. Recognition method of sEMG gesture based on improved deep forest[J]. Journal of Shanghai University of Engineering Science, 2023, 37(2): 190-197. doi: 10.12299/jsues.22-0173 |
[1] |
王亮, 张安元, 李佳佳, 等. 基于时频组合特征的PSO-SVM手势识别方法[J] . 长春理大学学报(自然科学版),2021,44(4):104 − 110.
|
[2] |
胡少康, 张道辉, 赵新刚, 等. 基于特征工程与级联森林的中风患者手部运动肌电识别方法[J] . 机器人,2021,43(5):526 − 538.
|
[3] |
李自由, 赵新刚, 张弼, 等. 基于表面肌电的意图识别方法在非理想条件下的研究进展[J] . 自动化学报,2021,47(5):955 − 969.
|
[4] |
OLBRICH M, PETERSEN E, HOFFMANN C, et al. Sparse estimation for the assessment of muscular activity based on sEMG measurements[J] . IFAC PapersOnLine,2018,51(15):305 − 310. doi: 10.1016/j.ifacol.2018.09.152
|
[5] |
刘光达, 董梦坤, 许蓝予, 等. 手臂疲劳时表面肌电信号特征[J] . 科学技术与工程,2021,21(25):10690 − 10696. doi: 10.3969/j.issn.1671-1815.2021.25.017
|
[6] |
MONIRI A, TERRACINA D, RODRIGUEZ-MANZANO J, et al. Real-time forecasting of sEMG features for trunk muscle fatigue using machine learning[J] . IEEE Transactions on Biomedical Engineering,2021,68(2):718 − 727.
|
[7] |
曹梦琳, 陈宇豪, 王珏, 等. 基于表面肌电图的人体运动意图识别研究进展[J] . 中国康复理论与实践,2021,27(5):595 − 603.
|
[8] |
HE J Y, JIANG N. Biometric from surface electromyogram (sEMG): Feasibility of user verification and identification based on gesture recognition[J] . Frontiers in Bioengineering and Biotechnology,2020,8:58. doi: 10.3389/fbioe.2020.00058
|
[9] |
汤纬地. 基于表面肌电的上肢运动分析关健技术研究[D]. 合肥: 中国科学技术大学, 2021.
|
[10] |
AI-TIMEMY A H, KHUSHABA R N, BUGMANN G, et al. Improving the performance against force variation of EMG controlled multifunctional upper-limb prostheses for transradial amputees[J] . IEEE Transactions on Neural Systems and Rehabilitation Engineering,2016,24(6):650 − 661.
|
[11] |
DUAN F, DAI L L, CHANG W N, et al. sEMG-based identification of hand motion commands using wavelet neural network combined with discrete wavelet transform[J] . IEEE Transactions on Industrial Electronics,2016,63(3):1923 − 1934. doi: 10.1109/TIE.2015.2497212
|
[12] |
WEI W T, DAI Q F, WONG Y K, et al. Surface-electromyography-based gesture recognition by multi-view deep learning[J] . IEEE Transactions on Bio-medical Engineering,2019,66(10):2964 − 2973. doi: 10.1109/TBME.2019.2899222
|
[13] |
KHEZRI M, JAHED M. A neuro-fuzzy inference system for sEMG-based identification of hand motion commands[J] . IEEE Transactions on Industrial Electronics,2011,58(5):1952 − 1960. doi: 10.1109/TIE.2010.2053334
|
[14] |
WEI W T, WONG Y K, DU Y, et al. A multi-stream convolutional neural network for sEMG-based gesture recognition in muscle computer interface[J] . Pattern Recognition Letters,2019,119:131 − 138. doi: 10.1016/j.patrec.2017.12.005
|
[15] |
TSINGANOS P, CORNELIS B, CORNELIS J, et al. Improved gesture recognition based on sEMG signals and TCN[C]//Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing. Piscataway: IEEE, 2019: 1169 − 1173.
|
[16] |
HEATHER D, KEVIN E, LEVI H, et al. High density electromyography data of normally limbed and trans radial amputee subjects for multifunction prosthetic control[J] . Journal of Electromyography and Kinesiology,2012,22(3):478 − 484. doi: 10.1016/j.jelekin.2011.12.012
|
[17] |
SAMUEL O W, ZHOU H, LI X X, et al. Pattern recognition of electromyography signals based on novel time domain features for amputees' limb motion classification[J] . Computers & Electrical Engineering,2018,67:646 − 655.
|
[18] |
HUDGINS B, PARKER P, SCOTT R N. A new strategy for multifunction myoelectric control[J] . IEEE Transactions on Bio-medical Engineering,1993,40(1):82 − 94. doi: 10.1109/10.204774
|
[19] |
POWELL M A, THAKOR N V. A training strategy for learning pattern recognition control for myoelectric prostheses[J] . Journal of Prosthetics and Orthotics: JPO,2013,25(1):30 − 41. doi: 10.1097/JPO.0b013e31827af7c1
|
[20] |
LEE S W, WILSON K M, LOCK B A, et al. Subject-specific myoelectric pattern classification of functional hand movements for stroke survivors[J] . IEEE Transactions on Neural Systems and Rehabilitation Engineering,2011,19(5):558 − 566. doi: 10.1109/TNSRE.2010.2079334
|
[21] |
ZHOU Z H, FENG J. Deep forest: Towards an alternative to deep neural networks[C]//Proceedings of the 26th International Joint Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2017: 3553 − 3559.
|
[22] |
葛绍林, 叶剑, 何明祥. 基于深度森林的用户购买行为预测模型[J] . 计算机科学,2019,46(9):190 − 194.
|
[23] |
LUO J L, ZHANG Z L, FU Y, et al. Time series prediction of COVID-19 transmission in America using LSTM and XGBoost algorithms[J] . Results in Physics,2021,27:104462. doi: 10.1016/j.rinp.2021.104462
|
[24] |
PALECZEK A, GROCHALA D, RYDOSZ A. Artificial breath classification using XGBoost algorithm for diabetes detection[J] . Sensors,2021,21(12):4187. doi: 10.3390/s21124187
|
[25] |
李建平, 张小庆, 李莹. 基于XGBoost的低渗油田储层粒度预测[J] . 计算机系统应用,2022,31(2):241 − 245. doi: 10.15888/j.cnki.csa.008325
|
[26] |
邹海洋, 李振华, 邓利平. 基于改进XGBoost和随机森林的VR三维手势识别[J] . 西华师范大学学报(自然科学版),2021,42(4):426 − 431.
|