Citation: | ZHOU Yipeng, LI Cong, YANG Wei. Path following control of unmanned vehicle based on improved model predictive control[J]. Journal of Shanghai University of Engineering Science, 2023, 37(2): 164-172. doi: 10.12299/jsues.22-0251 |
[1] |
NI J J, CHEN Y N, CHEN Y, et al. A survey on theories and applications for self-driving cars based on deep learning methods[J] . Applied Sciences,2020,10(8):2749. doi: 10.3390/app10082749
|
[2] |
CLEMENTS L M, KOCKELMAN K M. Economic effects of automated vehicles[J] . Transportation Research Record,2017,2606(1):106 − 114. doi: 10.3141/2606-14
|
[3] |
陈特, 陈龙, 徐兴, 等. 基于 Hamilton 理论的无人车路径跟踪控制[J] . 北京理工大学学报,2019,39(7):676 − 682.
|
[4] |
ZHANG Y H, WANG W D, WANG W, et al. An Adaptive Constrained Path Following Control Scheme for Autonomous Electric Vehicles[J] . IEEE Transactions on Vehicular Technology,2022,71(4):3569 − 3578. doi: 10.1109/TVT.2022.3146134
|
[5] |
SUSUKI R, KAWAI F, NAKAZAWA C, et al. Parameter optimization of model predictive control using PSO[C]//Proceedings of 2008 SICE Annual Conference. Tokyo: IEEE, 2008: 1981 − 1988.
|
[6] |
MOUMOUH H, LANGLOIS N, HADDAD M. Off-line Robustness Improvement of a Predictive Controller Using a Novel Tuning Approach Based on Artificial Neural Network[C]//Proceedings of 2020 IEEE 16th International Conference on Control & Automation (ICCA). Sapporo, Hokkaido: IEEE, 2020: 797 − 802.
|
[7] |
王银, 张灏琦, 孙前来, 等. 基于自适应 MPC 算法的轨迹跟踪控制研究[J] . 计算机工程与应用,2021,57(14):251 − 258. doi: 10.3778/j.issn.1002-8331.2007-0015
|
[8] |
XU S B, PENG H. Design, analysis, and experiments of preview path tracking control for autonomous vehicles[J] . IEEE Transactions on Intelligent Transportation Systems,2019,21(1):48 − 58.
|
[9] |
HUBER M F. Recursive Gaussian process: On-line regression and learning[J] . Pattern Recognition Letters,2014,45:85 − 91. doi: 10.1016/j.patrec.2014.03.004
|
[10] |
ARANY R R, AUWERAER H V D, SON T D. Learning Control for Autonomous Driving on Slippery Snowy Road Conditions[C]//Proceedings of 2020 IEEE Conference on Control Technology and Applications (CCTA). Montréal: IEEE, 2020: 312 − 317.
|
[11] |
SEEGER M. Gaussian processes for machine learning[J] . International journal of neural systems,2004,14(2):69 − 106. doi: 10.1142/S0129065704001899
|