Volume 38 Issue 2
Jun.  2024
Turn off MathJax
Article Contents
SHEN Shiyu, YANG Chaoyu. Edible oil drums date detection based on boundary learning[J]. Journal of Shanghai University of Engineering Science, 2024, 38(2): 205-211. doi: 10.12299/jsues.23-0161
Citation: SHEN Shiyu, YANG Chaoyu. Edible oil drums date detection based on boundary learning[J]. Journal of Shanghai University of Engineering Science, 2024, 38(2): 205-211. doi: 10.12299/jsues.23-0161

Edible oil drums date detection based on boundary learning

doi: 10.12299/jsues.23-0161
  • Received Date: 2023-07-03
  • Publish Date: 2024-06-30
  • In the industrial production environments such as irregular shapes of text, high reflectivity and blurring, the existing text detection method have the problems of inaccurate border localization and the limitation of detecting text within rectangular boxes. Based on boundary learning, a unified, broad-to-fine detection framework was proposed. It mainly consists of a feature extraction backbone network, a boundary suggestion module, and an iterative optimized boundary transformer module. ResNet network was used in the feature extraction backbone network to extract features from images. The boundary suggestion module consisted of multi-layer dilation convolution was used to generate rough bounding boxes. Additionally, an encoder-decoder structure was used in boundary transformer module to gradually improve the rough bounding boxes by iterative deformation under the guidance of classification map, distance field and direction field. The results of experiments conducted based on the self-collected datasets show that the accuracy, recall and F-measure values of the model are 91.56%, 87.38% and 89.41% respectively. The efficiency and advantages of the algorithm in the date detection of edible oil drums are verified.
  • loading
  • [1]
    SHI B G, BAI X, BELONGIE S. Detecting oriented text in natural images by linking segments[C]//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Honolulu: IEEE, 2017. DOI: 10.1109/CVPR.2017.371.
    [2]
    胡蝶, 侯俊, 张全年等. 基于卷积神经网络的生产日期识别[J] . 电子测量技术,2020,43(1):152 − 156. doi: 10.19651/j.cnki.emt.1903233
    [3]
    宫鹏涵. 基于YOLOv5算法的钢印字符识别方法[J] . 兵器装备工程学报,2022,43(8):101 − 105, 124. doi: 10.11809/bqzbgcxb2022.08.015
    [4]
    寇文博, 屈八一, 李智奇. 一种改进Transformer的仪表字符识别算法[J] . 自动化与仪器仪表,2022(273):284 − 288. doi: 10.14016/j.cnki.1001-9227.2022.07.284
    [5]
    JIE L M, SHAO G Q, SHEN D. A machine vision based medicine package printing three date marks detection scheme[C]//Proceedings of 2021 2nd International Conference on Artificial Intelligence and Information Systems. New York: Association for Computing Machinery, 2021.
    [6]
    LIAO M H, ZOU Z S, WAN Z Y, et al. Real-time scene text detection with differentiable binarization and adaptive scale fusion[J] . IEEE Transactions on Pattern Analysis and Machine Intelligence,2023,45(1):919 − 931. doi: 10.1109/TPAMI.2022.3155612.Epub2022Dec5
    [7]
    ZHANG S X, ZHU X, CHEN L, et al. Arbitrary shape text detection via segmentation with probability maps[J] . IEEE Transactions on Pattern Analysis and Machine Intelligence,2022,45(3):2736 − 2750. doi: 10.1109/TPAMI.2022.3176122.Epub2023Feb3
    [8]
    赵景波, 邱腾飞, 朱敬旭辉,等. 基于RP-ResNet网络的抓取检测方法[J] . 计算机应用与软件,2023,40(3):210 − 216. doi: 10.3969/j.issn.1000-386x.2023.03.032
    [9]
    刘倩, 杨鹏, 毛红梅. 基于自适应注意力的任意形状场景文本检测[J] . 计算机工程与设计,2023,44(3):901 − 907. doi: 10.16208/j.issn1000-7024.2023.03.036
    [10]
    周冲浩, 顾勇翔, 彭程. 基于多尺度特征融合的自然场景文本检测[J] . 计算机应用,2022,42(S2):31 − 35.
    [11]
    ZHU Y Q, CHEN J Y, LIANG L Y, et al. Fourier contour embedding for arbitrary-shaped text detection[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Nashville: IEEE, 2021: 3123 − 3131.
    [12]
    LIN T Y, DOLLÁR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Honolulu: IEEE, 2017: 2117 − 2125.
    [13]
    邓阿琴, 胡平霞. 基于改进卷积神经网络的食品异物自动识别方法[J] . 食品与机械,2022,38(7):133 − 137. doi: 10.13652/j.spjx.1003.5788.2022.60038
    [14]
    ZHOU X Y, YAO C, WEN H, et al. EAST: An efficient and accurate scene text detector[C]//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Honolulu: IEEE, 2017: 2642 − 2651.
    [15]
    LONG S B, RUAN J Q, ZHANG W J, et al. TextSnake: A flexible representation for detecting text of arbitrary shapes[C]//Proceedings of the European Conference on Computer Vision (ECCV). Munich: ECCV, 2018: 20 − 36.
    [16]
    ZHANG S X, ZHU X B, HOU J B, et al. Deep relational reasoning graph network for arbitrary shape text detection[C]//Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Seattle: IEEE, 2020: 2238 − 2250.
    [17]
    XU Y C, WANG Y K, ZHOU W, et al. TextField: Learning a deep direction field for irregular scene text detection[J] . IEEE Transactions on Image Processing,2019,28(11):5566 − 5579.
    [18]
    WAN J Q, LIU Y, WEI D L, et al. Super-BPD: Super boundary-to-pixel direction for fast image segmentation[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 2020: 9250 − 9259.
    [19]
    LING H, GAO J, KAR A, et al. Fast interactive object annotation with Curve-GCN[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach: IEEE, 2019: 5257 − 5266.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(4)

    Article Metrics

    Article views (94) PDF downloads(15) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return