Volume 38 Issue 2
Jun.  2024
Turn off MathJax
Article Contents
GAO Guangya, YAN Juan, YANG Huibin, LIU Yabiao. Visual measurement method for aircraft milling parts' guide hole with interference area[J]. Journal of Shanghai University of Engineering Science, 2024, 38(2): 111-117. doi: 10.12299/jsues.23-0173
Citation: GAO Guangya, YAN Juan, YANG Huibin, LIU Yabiao. Visual measurement method for aircraft milling parts' guide hole with interference area[J]. Journal of Shanghai University of Engineering Science, 2024, 38(2): 111-117. doi: 10.12299/jsues.23-0173

Visual measurement method for aircraft milling parts' guide hole with interference area

doi: 10.12299/jsues.23-0173
  • Received Date: 2023-08-03
  • Publish Date: 2024-06-30
  • In the measurement process of aerospace milling parts, traditional image processing methods cannot effectively measure the size of guide holes in milling parts that contain interference factors such as chips and cutting fluid. To address this issue, a visual measurement method for workpiece aperture based on the TransUNet model was proposed to detect interference regions in the workpiece image, and a mixed pooling module was introduced to improve the model's feature recognition range for chips and cutting fluids. Then, an image direction texture repair method was used to repair the detection image, and the guide hole edge pixels were extracted by improving the edge detection algorithm. Combining the random sampling consensus algorithm and least squares method, the guide hole geometric size was obtained by filtering and fitting the edge pixel points. Finally, the effectiveness of the method was verified by an example of aerospace fixture plate. The measurement accuracy of the guide hole aperture is 0.03 mm, which can meets the requirements of quality inspection for aerospace milling parts.
  • loading
  • [1]
    勾江洋. 基于机器视觉的飞机结构件上群排导孔在机检测技术研究[D]. 南京: 南京航空航天大学, 2018.
    [2]
    ULLAH U, BHATTI F A, MAUD A R, et al. IoT-enabled computer vision-based parts inspection system for SME 40[J] . Microprocessors and Microsystems,2021,87(10):43 − 54.
    [3]
    ZHANG H, LIU J, CHEN S F, et a. Novel roughness measurement for grinding surfaces using simulated data by transfer kernel learning[J] . Applied Soft Computing,2018,73:508 − 519.
    [4]
    ZHANG Z Y, WANG X D, ZHAO H T, et al. The machine vision measurement module of the modularized flexible precision assembly station for assembly of micro- and meso-sized parts[J] . Micromachines,2020,11(10):918.
    [5]
    BINALI R, KUNTOLU M, PIMENOV D Y, et al. Advance monitoring of hole machining operations via intelligent measurement systems: A critical review and future trends[J]. Measurement, 2022, 201. DOI: 10.1016/j.measurement.2022.111757.
    [6]
    党长营, 贾立功, 曾志强, 等. 基于机器视觉的双金属铸件圆孔测量方法[J] . 制造技术与机床,2021(6):96−99.
    [7]
    陈旭昂, 邓恒, 周建华, 等. 基于机器视觉的钢轨圆孔动态测量方法[J] . 电子测量技术,2022,45(21):111−116.
    [8]
    解则晓, 王晓东, 宫韩磊. 基于双目视觉的薄壁零件圆孔轮廓测量[J] . 中国激光,2019,46(12):171−178.
    [9]
    唐瑞尹, 王荃, 何鸿鲲, 等. 基于小波变换和数学形态学的孔径测量研究[J] . 应用光学,2017,38(4):622−626.
    [10]
    张雪峰, 闫慧. 基于中值滤波和分数阶滤波的图像去噪与增强算法[J] . 东北大学学报(自然科学版),2020,41(4):482 − 487.
    [11]
    邓斌攸, 池志强, 潘云峰, 等. 家具板件圆形孔位的机器视觉在线检测算法[J] . 木材科学与技术,2022,36(2):60 − 64.
    [12]
    LI X, YANG Y, YE Y, et al. An online visual measurement method for workpiece dimension based on deep learning[J]. Measurement, 2021, 185. DOI: 10.1016/j.measurement.2021.110032.
    [13]
    YI H A, LIU J, AO P, et al. Visual method for measuring the roughness of a grinding piece based on color indices[J] . Optics Express,2016,24(15):17215 − 17233.
    [14]
    RIFAI A P, AOYAMA H, THO N H, et al. Evaluation of turned and milled surfaces roughness using convolutional neural network[J] . Measurement,2020,161:107860. doi: 10.1016/j.measurement.2020.107860
    [15]
    RAVIMAL D, KIM H, KOH D, et al. Image-based inspection technique of a machined metal surface for an unmanned lapping process[J] . International Journal of Precision Engineering and Manufacturing-Green Technology,2020,7(3):547 − 557. doi: 10.1007/s40684-019-00181-7
    [16]
    丁莉, 苏倩. 基于纹理的图像修复的技术的研究[J] . 自动化与仪器仪表,2016(7):150 − 151.
    [17]
    OTSU N. A threshold selection method from gray-level histograms[J] . IEEE Transactions on Systems Man & Cybernetics,2007,9(1):62 − 66.
    [18]
    CHEN C S, HUNG Y P, CHENG J B. RANSAC-based DARCES: A new approach to fast automatic registration of partially overlapping range images[J] . IEEE Transactions on Pattern Analysis & Machine Intelligence,2002,21(11):1229 − 1234.
    [19]
    ZHANG Z Y. Flexible camera calibration by viewing a plane from unknown orientations[C]// Proceedings of the Seventh IEEE International Conference on Computer Vision. Redmond: IEEE, 1999.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(1)

    Article Metrics

    Article views (163) PDF downloads(77) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return