Volume 38 Issue 2
Jun.  2024
Turn off MathJax
Article Contents
FENG Yening, LI Tijin, ZHOU Wei, XU Bin, WU Minghui. Kinematic simulation of underwater crawling of dredging robot based on recurdyn[J]. Journal of Shanghai University of Engineering Science, 2024, 38(2): 171-178. doi: 10.12299/jsues.23-0176
Citation: FENG Yening, LI Tijin, ZHOU Wei, XU Bin, WU Minghui. Kinematic simulation of underwater crawling of dredging robot based on recurdyn[J]. Journal of Shanghai University of Engineering Science, 2024, 38(2): 171-178. doi: 10.12299/jsues.23-0176

Kinematic simulation of underwater crawling of dredging robot based on recurdyn

doi: 10.12299/jsues.23-0176
  • Received Date: 2023-08-09
  • Publish Date: 2024-06-30
  • Aiming at the problem that industrial silt in settling tank was difficult to clean up, a crawler-type underwater dredging robot which can adapt to complex environment was designed. A crawler-type moving mechanism was used by the silt removal robot to adapt to soft mud layer. The stability of the dredging robot driving on flat ground and up and down slopes were analyzed, and the feasible region of the center of buoyancy of dredging robot running stably was obtained. The dynamic model of a dredging robot was built based on RecurDyn simulation software, and different types of terrain environment and working conditions were analyzed when the robot operating underwater. The results indicate that the buoyancy set in the center of buoyancy domain when the stability of the robot is higher. The height of the center of mass of the dredging robot can always remain stable and meet the design requirements. It is confirmed that the dredging robot can stably pass through 15° slopes and 100 mm obstacle, which proves that the design of the dredging robot can adapt to the complex underwater environment.
  • loading
  • [1]
    韩世旺, 王鲁元, 张兴宇, 等. 钢渣与污泥协同资源化研究进展[J] . 化学通报,2023,86(1):83 − 90,104.
    [2]
    VALPOLINI P. Infantry fighting vehicles and armoured personnel carriers[J] . Armada International,2013,67(6):236 − 246.
    [3]
    张响亮, 张华, 熊根, 等. 基于RecurDyn的履带式消防机器人设计与爬梯运动学仿真[J] . 机械传动,2020,44(6):89 − 95.
    [4]
    刘妤, 谢铌, 张拓, 等. 履带车辆软坡地面力学建模及行驶性能分析[J] . 机械设计,2021,38(3):110 − 118.
    [5]
    王锦红, 林勇, 李海林. 基于Recurdy履带式海底行走机构不同工况性能分析[J] . 机械传动,2017,41(5):45 − 52.
    [6]
    李硕, 吴园涛, 李琛, 等. 水下机器人应用及展望[J] . 中国科学院院刊,2022,37(7):910 − 920.
    [7]
    PURSER A, THOMSEN L, BARNES C, et al. Temporal and spatial benthic data collection via an Internet operated deep sea crawler[J] . Methods in Oceanography,2013,5:1 − 18. doi: 10.1016/j.mio.2013.07.001
    [8]
    翟旭强, 张俊俊, 王皓冉, 等. 水下浮游爬行式机器人结构设计与研究[J] . 制造业自动化,2021,43(5):41 − 45, 55. doi: 10.3969/j.issn.1009-0134.2021.05.010
    [9]
    肖顺. 履带式变体移动机器人样机设计与关键技术研究[D]. 北京: 北方工业大学, 2023.
    [10]
    王南丁. 消防机器人履带行走装置设计及运动学仿真研究[D]. 哈尔滨: 东北林业大学, 2015.
    [11]
    翟旭强. 消力池水下巡检机器人结构设计与研究[D]. 绵阳: 西南科技大学, 2020.
    [12]
    INOUE T, SHIOSAWA T, TAKAGI K. Dynamic analysis of motion of crawler-type remotely operated vehicles[J] . IEEE Journal of Oceanic Engineering,2013,38(2):375 − 382. doi: 10.1109/JOE.2012.2225292
    [13]
    郭进宝, 周悦, 郭威, 等. 海岸带履带机器人底盘参数优化与行驶仿真分析[J] . 制造业自动化,2022,44(12):85 − 90.
    [14]
    陈安成, 穆希辉, 杜峰坡, 等. 基于RecurDyn的小型履带车的建模与仿真[J] . 机械设计,2013,30(10):36 − 39.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(2)

    Article Metrics

    Article views (162) PDF downloads(40) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return