Citation: | LIANG Danyang, WEI Dan, ZHUANG Xuyao, JIANG Lei. Research on person re-identification by fusing posture information and attention mechanisms[J]. Journal of Shanghai University of Engineering Science, 2024, 38(2): 179-186. doi: 10.12299/jsues.23-0181 |
[1] |
罗浩, 姜伟, 范星, 等. 基于深度学习的行人重识别研究进展[J] . 自动化学报,2019,45(11):2032 − 49.
|
[2] |
马丁. 面向复杂场景的行人重识别关键技术研究 [D]. 徐州: 中国矿业大学, 2022.
|
[3] |
沈欣怡. 基于深度学习行人重识别研究 [D]. 长春: 吉林大学, 2022.
|
[4] |
ZHENG L, HUANG Y J, LU H, et al. Pose invariant embedding for deep person re-identification[J] . IEEE Trans Image Process,2019,28(9):4500 − 4509.
|
[5] |
ZHAO H Y, TIAN M Q, SUN S Y, et al. Spindle net: Person re-identification with human body region guided feature decomposition and fusion[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017.
|
[6] |
SU C, LI J, ZHANG S, et al. Pose-driven deep convolutional model for person re-identification[C]//Proceedings of the IEEE International Conference on Computer Vision (ICCV). Sydney: IEEE, 2013.
|
[7] |
SUH Y, WANG J, TANG S, et al. Part-aligned bilinear representations for person re-identification[C]//Proceedings of the 15th European Conference on Computer Vision (ECCV). Munich: Springer, 2018.
|
[8] |
HU J, SHEN L, ALBANIE S, et al. Squeeze-and-excitation networks[J] . IEEE Transactions on Pattern Analysis and Machine Intelligence,2020,42(8):2011 − 23. doi: 10.1109/TPAMI.2019.2913372
|
[9] |
WOO S, PARK J, LEE J-Y, et al. CBAM: Convolutional block attention module[C]//Proceedings of the 15th European Conference on Computer Vision (ECCV). Munich: Springer, 2018.
|
[10] |
PARK J, WOO S, LEE J Y, et al. BAM: Bottleneck attention module[EB/OL]. (2018-07-17)[2023-04-03]. https://doi.org/10.48550/arXiv.1807.06514.
|
[11] |
LI Y, YANG S, LIU P, et al. SimCC: A simple coordinate classification perspective for human pose estimation[C]//Proceedings of the 17th European Conference on Computer Vision (ECCV). Tel Aviv: Springer, 2022.
|
[12] |
CHEN K, WANG J, PANG J, et al. MMDetection: Open MMLab detection toolbox and benchmark[EB/OL]. (2019-06-17)[2022-12-21]. https://arxiv.org/abs/1906.07155.
|
[13] |
ZHOU K, YANG Y, CAVALLARO A, et al. Omni-scale feature learning for person re-identification[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV). Seoul: IEEE, 2019.
|
[14] |
WANG G, YANG S, LIU H, et al. High-order information matters: Learning relation and topology for occluded person re-identification[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 2020.
|
[15] |
WANG H, SHEN J, LIU Y, et al. NFormer: Robust person re-identification with neighbor transformer[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. New Orleans: IEEE, 2022.
|
[16] |
ZHANG Z, LAN C, ZENG W, et al. Relation-aware global attention for person re-identification[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). New Orleans: IEEE, 2020.
|
[17] |
LUO H, JIANG W, ZHANG X, et al. AlignedReID plus plus: Dynamically matching local information for person re-identification[J] . Pattern Recognition: The Journal of the Pattern Recognition Society,2019,94:53 − 61. doi: 10.1016/j.patcog.2019.05.028
|
[18] |
CHEN G, ZOU G, LIU Y, et al. Few-shot person re-identification based on feature set augmentation and metric fusion[J]. Engineering Applications of Artificial Intelligence, 2023, 125: 106761.
|
[19] |
ZHANG G, LIN W, CHANDRAN A K, et al. Complementary networks for person re-identification[J] . Information Sciences,2023,633:70 − 84. doi: 10.1016/j.ins.2023.02.016
|
[20] |
HOU R, MA B, CHANG H, et al. Interaction-and-aggregation network for person re-identification[C]//Proceedings of the 32nd IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Long Beach: IEEE, 2019.
|
[21] |
KHATUN A, DENMAN S, SRIDHARAN S, et al. Pose-driven attention-guided image generation for person re-identification[EB/OL]. (2021-04-28)[2023-04-21]. https://doi.org/10.48550/arXiv.2104.13773.
|
[22] |
HE L, LIANG J, LI H, et al. Deep spatial feature reconstruction for partial person re-identification: Alignment-free approach[C]//Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake: IEEE, 2018.
|
[23] |
GAO S, WANG J, LU H, et al. Pose-guided visible part matching for occluded person ReID[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Washington: IEEE, 2020.
|
[24] |
SUN Y, ZHENG L, YANG Y, et al. Beyond part models: Person retrieval with refined part pooling (and a strong convolutional baseline)[C]//Proceedings of the 15th European Conference on Computer Vision (ECCV). Salt Lake: IEEE, 2018.
|
[25] |
JIN H, LAI S, QIAN X J I T O C, et al. Occlusion-sensitive person re-identification via attribute-based shift attention[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2021, 32(4): 2170−2185.
|