留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

二维AlC纳米片吸附有毒气体的第一性原理研究

李晓怡 梅甜甜 王畅 吴建宝

李晓怡, 梅甜甜, 王畅, 吴建宝. 二维AlC纳米片吸附有毒气体的第一性原理研究[J]. 上海工程技术大学学报, 2021, 35(2): 129-136.
引用本文: 李晓怡, 梅甜甜, 王畅, 吴建宝. 二维AlC纳米片吸附有毒气体的第一性原理研究[J]. 上海工程技术大学学报, 2021, 35(2): 129-136.
LI Xiaoyi, MEI Tiantian, WANG Chang, WU Jianbao. First-principles study on adsorption of toxic gases by two-dimensional AlC nanosheets[J]. Journal of Shanghai University of Engineering Science, 2021, 35(2): 129-136.
Citation: LI Xiaoyi, MEI Tiantian, WANG Chang, WU Jianbao. First-principles study on adsorption of toxic gases by two-dimensional AlC nanosheets[J]. Journal of Shanghai University of Engineering Science, 2021, 35(2): 129-136.

二维AlC纳米片吸附有毒气体的第一性原理研究

详细信息
    作者简介:

    李晓怡(1996−),女,在读硕士,研究方向为低维类碳纳米材料. E-mail:M130118114@sues.edu.cn

    通讯作者:

    吴建宝(1975−),男,副教授,博士,研究方向为分子筛、锂硫电池. E-mail:wujianbao@sues.edu.cn

  • 中图分类号: O48

First-principles study on adsorption of toxic gases by two-dimensional AlC nanosheets

  • 摘要: 基于密度泛函理论研究有毒气体(SO2、NO2、NO、CO、H2S、NH3和HCN)在二维碳化铝(AlC)纳米片上的吸附性能,并进一步计算各种吸附体系的电子性质以及功函数. 计算结果表明:吸附气体后AlC单层并未改变其金属性,吸附能的变化区间为[−3.11,−0.09] eV,除CO和HCN外,其他气体均可以通过化学吸附被稳定地吸附在AlC单层上;电荷分析表明,被吸附后,NO2、NO和SO2分别从AlC单层上得到0.473|e|,0.317|e|和0.249|e|;电荷密度差分图也进一步说明AlC单层与NO2、NO和SO2这3种有毒气体间存在较强的相互作用,并且SO2、NO2和NO在吸附后,体系的功函数明显增加. 基于AlC单层吸附有毒气体后能量、电子性质和功函数的响应,AlC单层有望成为SO2、NO2和NO等有毒气体的检测材料或传感材料.
  • 图  1  AlC单层结构及电子性质

    Figure  1.  Monolayer structure and electronic properties of AlC

    图  2  AlC上吸附的不同气体分子的优化结构

    Figure  2.  Optimized configurations of different gas molecules adsorbed on AlC

    图  3  AlC上吸附不同气体分子的总态密度图

    Figure  3.  TDOS of different gas molecules adsorbed on AlC

    图  4  AlC上吸附不同气体分子的分波态密度曲线

    Figure  4.  PDOS of different gas molecules adsorbed on AlC

    图  5  AlC上吸附的不同气体分子的电荷密度差分图

    Figure  5.  Charge density difference of different gas molecules adsorbed on AlC

    图  6  AlC上吸附的不同气体分子的功函数

    Figure  6.  Work functions of different gas molecules adsorbed on AlC

    表  1  吸附有毒气体的能带结构参数、吸附能、转移电子数、费米能量和功函数

    Table  1.   Band structure parameters, adsorption energy, number of transferred electrons, Fermi energy and work function for adsorbing toxic gases

    体系导电性距离/Å吸附能Ead /eV转移电子数Q /e费米能量EF /eV功函数Φ/eV功函数偏差ΔΦ
    AlC− 4.964.760
    NO2Metallic1.413− 3.11− 0.473− 5.255.170.41
    NOMetallic1.344− 2.92− 0.317− 5.115.030.27
    SO2Metallic1.753− 2.81− 0.249− 5.095.000.24
    COMetallic3.431− 0.13− 0.003− 4.964.790.03
    H2SMetallic2.607− 0.500.085− 4.644.46− 0.30
    NH3Metallic2.128− 0.990.117− 4.464.25− 0.51
    HCNMetallic3.489− 0.090.004− 4.924.760
    下载: 导出CSV
  • [1] KAMPA M, CASTANAS E. Human health effects of air pollution[J] . Environmental Pollution,2008,151(2):362 − 367. doi: 10.1016/j.envpol.2007.06.012
    [2] JIA X T, ZHANG H, ZHANG Z M. First-principles investigation of vacancy-defected graphene and Mn-doped graphene towards adsorption of H2S[J] . Superlattices and Microstructures,2019,134:9.
    [3] MA S X, SU L C, JIN L, et al. A first-principles insight into Pd-doped MoSe2 monolayer: A toxic gas scavenger[J] . Physics Letters A,2019,383(30):9.
    [4] QIN Y X, ZHANG Z. Co-modulation of graphene by N hetero-doping & vacancy defects and the effect on NO2 adsorption and sensing: First-principles study[J] . Physica E-Low-Dimensional Systems & Nanostructures,2020,116:7.
    [5] BASHARNAVAZ H, HABIBI-YANGJEH A, KAMALI S H. A first-principle investigation of NO2 adsorption behavior on Co, Rh, and Ir-embedded graphitic carbon nitride: Looking for highly sensitive gas sensor[J] . Physics Letters A,2020,384(2):8.
    [6] YANG L M, TANG Y H, YAN D F, et al. Polyaniline-reduced graphene oxide hybrid nanosheets with nearly vertical orientation anchoring palladium nanoparticles for highly active and stable electrocatalysis[J] . Acs Applied Materials & Interfaces,2016,8(1):169 − 176.
    [7] ALI M, TIT N. Adsorption of NO and NO2 molecules on defected-graphene and ozone-treated graphene: First-principles analysis[J] . Surface Science,2019,684:28 − 36. doi: 10.1016/j.susc.2019.01.012
    [8] BASHARNAVAZ H, HABIBI-YANGJEH A, KAMALI SH. Fe, Ru, and Os-embedded graphitic carbon nitride as a promising candidate for NO gas sensor: A first-principles investigation[J] . Materials Chemistry and Physics,2019,231:264 − 271. doi: 10.1016/j.matchemphys.2019.04.003
    [9] CUI H P, ZHENG K, ZHANG Y Y, et al. Superior selectivity and sensitivity of C3N sensor in probing toxic gases NO2 and SO2[J] . IEEE Electron Device Letters,2018,39(2):284 − 287. doi: 10.1109/LED.2017.2787788
    [10] NIU F F, YANG D G, CAI M, et al. A first principles study of blue phosphorene as a superior media for gas sensor[C]//19th International Conference on Electronic Packaging Technology,New York, 2018: 1149−1152.
    [11] MAO Y L, LONG L B, YUAN J M, et al. Toxic gases molecules (NH3, SO2 and NO2) adsorption on GeSe monolayer with point defects engineering[J] . Chemical Physics Letters,2018,706(1):501 − 508. doi: 10.1016/j.cplett.2018.06.061
    [12] RAD A S, ESFAHANIAN M, MALEKI S, et al. Application of carbon nanostructures toward SO2 and SO3 adsorption: a comparison between pristine graphene and N-doped graphene by DFT calculations[J] . Journal of Sulfur Chemistry,2016,37(2):176 − 188. doi: 10.1080/17415993.2015.1116536
    [13] ROONDHE B, PATEL K, JHA P K. Two-dimensional metal carbide comrade for tracing CO and CO2[J] . Applied Surface Science,2019,496:14.
    [14] KRESSE G, FURTHMÜLLER J. Efficient iterative schemes for Ab initio total-energy calculations using a plane-wave basis set[J] . Physical Review. B, Condensed Matter,1996,54:11169 − 11186. doi: 10.1103/PhysRevB.54.11169
    [15] KRESSE G, JOUBERT D. From ultrasoft pseudopotentials to the projector augmented-wave method[J] . Physical Review,1999,59(3):1758 − 1775. doi: 10.1103/PhysRevB.59.1758
    [16] GRIMME S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction[J] . Journal of computational chemistry,2006,27(15):1787 − 1799.
    [17] GRIMME S, ANTONY J, EHRLICH S, et al. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu[J] . Journal of Chemical Physics,2010,132(15):154104. doi: 10.1063/1.3382344
    [18] PATEL K, BARAIYA B A, SOM N N, et al. Investigating hydrogen evolution reaction properties of a new honeycomb 2D AlC[J] . International Journal of Hydrogen Energy,2020,45(37):18602 − 18611. doi: 10.1016/j.ijhydene.2019.10.131
    [19] POHLE R, TAWIL A, DAVYDOVSKAYA P, et al. Metal organic frameworks as promising high surface area material for work function gas sensors[J] . Procedia Engineering,2011,25:108 − 111.
    [20] OUYANG T H, QIAN Z, HAO X P, et al. Effect of defects on adsorption characteristics of AlN monolayer towards SO2 and NO2: Ab initio exposure[J] . Applied Surface Science,2018,462:615 − 622. doi: 10.1016/j.apsusc.2018.08.073
  • 加载中
图(6) / 表(1)
计量
  • 文章访问数:  396
  • HTML全文浏览量:  394
  • PDF下载量:  316
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-06
  • 刊出日期:  2021-06-30

目录

    /

    返回文章
    返回