留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

淬火配分工艺对高强Q&P钢织构和性能的影响

李泊言 苏钰 左智成 李军

李泊言, 苏钰, 左智成, 李军. 淬火配分工艺对高强Q&P钢织构和性能的影响[J]. 上海工程技术大学学报, 2021, 35(3): 208-214.
引用本文: 李泊言, 苏钰, 左智成, 李军. 淬火配分工艺对高强Q&P钢织构和性能的影响[J]. 上海工程技术大学学报, 2021, 35(3): 208-214.
LI Boyan, SU Yu, ZUO Zhicheng, LI Jun. Effect of quenching and partitioning process on texture and properties of high strength Q&P steel[J]. Journal of Shanghai University of Engineering Science, 2021, 35(3): 208-214.
Citation: LI Boyan, SU Yu, ZUO Zhicheng, LI Jun. Effect of quenching and partitioning process on texture and properties of high strength Q&P steel[J]. Journal of Shanghai University of Engineering Science, 2021, 35(3): 208-214.

淬火配分工艺对高强Q&P钢织构和性能的影响

基金项目: 上海工程技术大学大学生创新训练资助项目(CX1905003);上海工程技术大学一流研究生培养资助项目(010672)
详细信息
    作者简介:

    李泊言(2000−),男,在读本科生,研究方向为高强钢成形性能. E-mail:labern@163.com

    通讯作者:

    苏 钰(1977−),女,副教授,博士,研究方向为金属强韧化及材料计算. E-mail:suyu@sues.edu.cn

  • 中图分类号: TG156.3

Effect of quenching and partitioning process on texture and properties of high strength Q&P steel

  • 摘要: 对试验用淬火配分(Quenching and Partitioning,Q&P)钢在一步淬火配分工艺中不同淬火温度(220 、260 、300 ℃)和淬火时间(60 、120 、180 s)下组织、织构、力学性能及拉伸断口特征进行研究. 结果表明:试验用Q&P钢在一步淬火配分中获得的最大残余奥氏体体积分数为7.12%;随着淬火温度升高,板条马氏体的宽度增大;随着淬火温度和配分时间升高,织构的最大强度逐渐降低,抗拉强度逐渐减少;屈服强度和延伸率呈相反的变化趋势.
  • 图  1  淬火温度和淬火时间变化的一步淬火配分工艺

    Figure  1.  1-Step Q&P process of varying quenching temperature and quenching time

    图  2  试验用Q&P钢拉伸试样尺寸

    Figure  2.  Dimensions of tensile samples of Q&P steel

    图  3  Q&P钢在不同淬火处理之后的金相显微图(1-step)

    Figure  3.  Metallographic micrographs of Q&P steel after different quenching temperatures

    (a) 900 ℃ × 90 s + 220 ℃ × 120 s (b) 900 ℃ × 90 s + 260 ℃ × 120 s (c) 900 ℃ × 90 s + 300 ℃ × 120 s

    图  4  Q&P钢在不同淬火处理之后的SEM图(1-step)

    (a) 900 ℃ × 90 s + 220 ℃ × 120 s (b) 900 ℃ × 90 s + 260 ℃ × 120 s (c) 900 ℃ × 90 s + 300 ℃ × 120 s

    Figure  4.  SEM micrographs of Q&P steel after different quenching temperatures

    图  5  配分120 s不同淬火样的XRD图(1-step)

    Figure  5.  XRD pattern of different quenching samples with 120 s

    图  6  Q&P钢在不同淬火温度下配分120 s时ODF图

    Figure  6.  ODF pictures of Q&P steel at different quenching temperatures with patitioning time of 120 s

    图  7  不同淬火温度下的Q&P钢取向线的变化,

    Figure  7.  Changes of orientation line at different quenching temperatures

    图  8  Q&P钢淬火到260 ℃保温60、120、180 s的ODF图

    Figure  8.  ODF pictures of Q&P steel quenched to 300 ℃ isothermy 60, 120 and 180 s

    图  9  不同配分时间下的Q&P钢取向线的变化

    Figure  9.  The variation of orientation line for different partitioning time

    图  10  不同淬火配分工艺下的应力−应变曲线和拉伸性能

    Figure  10.  Stress-strain curves and tensile properties under different quenching and partitioning processes

    图  11  Q&P钢的拉伸断口图

    Figure  11.  Micrograph of fractured surfaces of the Q&P steel

    表  1  试验用Q&P钢的主要成分

    Table  1.   Main chemical composition of test Q&P steel

    元素CSiMnAlFe
    质量分数/%0.231.551.920.04余量
    下载: 导出CSV

    表  2  试样中残余奥氏体体积含量及其含碳量

    Table  2.   Volume content and carbon content of retained austenite in samples

    试样RA/%RA中C含量/%
    300 ℃/s + 120 s6.821.20
    260 ℃/s + 120 s7.121.26
    220 ℃/s + 120 s4.281.29
    下载: 导出CSV
  • [1] LEE S J, LEE S, DE COOMAN B C. Mn partitioning during the intercritical annealing of ultrafine-grained 6% Mn transformation-induced plasticity steel[J] . Scripta Materialia,2011,64(7):649 − 652. doi: 10.1016/j.scriptamat.2010.12.012
    [2] ISHIDA K. Effect of alloying elements on the critical driving force of martensitic transformation in iron alloys[J] . Scripta Metallurgica,1977,11(3):237 − 242.
    [3] JIMENEZ-MELERO E, VAN DIJK N H, ZHAO L, et al. D9 in situ observation of the martensitic transformation of individual grains using a high-energy X-ray microbeam[J] . Powder Diffraction,2007,22(2):180.
    [4] YANG Y G, MI Z L, XU M, et al. Impact of intercritical annealing temperature and strain state on mechanical stability of retained austenite in medium Mn steel[J] . Materials Science and Engineering:A,2018,725(14):389 − 397.
    [5] SPEER J, MATLOCK D K, DE COOMAN B C, et al. Carbon partitioning into austenite after martensite transformation[J] . Acta Materialia,2003,51(9):2611 − 2622. doi: 10.1016/S1359-6454(03)00059-4
    [6] SANTOFIMIA M J, ZHAO L, SIETSMA J. Microstructural evolution of a low-carbon steel during application of quenching and partitioning heat treatments after partial austenitization[J] . Metallurgical & Materials Transactions A,2009,40(1):46 − 57.
    [7] ZAEFFERER S, OHLERT J, BLECK W. A study of microstructure, transformation mechanisms and correlation between microstructure and mechanical properties of a low alloyed TRIP steel[J] . Acta-Materialia,2004,52(9):2765 − 2778. doi: 10.1016/j.actamat.2004.02.044
    [8] PENG F, XU Y B, G X L, et al. Microstructure characterization and mechanical behavior analysis in a high strength steel with different proportions of constituent phases[J] . Materials Science and Engineering:A,2018,734:398 − 407. doi: 10.1016/j.msea.2018.08.018
    [9] CLARKE A J, SPEER J G, MATLOCK D K, et al. Influence of carbon partitioning kinetics on final austenite fraction during quenching and partitioning[J] . Scripta Materialia,2010,61(2):149 − 152. doi: 10.1016/j.scriptamat.2009.03.021
    [10] DE MOOR E, LACROIX S, CLARKE A J, et al. Effect of retained austenite stabilized via quench and partitioning on the strain hardening of martensitic steels[J] . Metallurgical and Materials Transactions A:Physical Metallurgy and Materials Science,2008,39(11):2586 − 2595.
    [11] ZHAO Q, LIU Z Y, HUANG T T, et al. Enhanced fracture toughness in an annealed Al-Cu-Mg alloy by increasing Goss/Brass texture ratio[J] . Materials Characterization,2016,119(7):47 − 54.
    [12] DE KNIJF D, NGUYEN-MINH T, PETROV R H, et al. Orientation dependence of the martensite transformation in a quenched and partitioned steel subjected to uniaxial tension[J] . Journal of Applied Crystallography,2014,47(4):1261 − 1266. doi: 10.1107/S1600576714011959
    [13] TAN X D, XU Y B, YANG X L, et al. Microstructure-properties relationship in a one-step quenched and partitioned steel[J] . Materials Science & Engineering A,2014,589(34):101 − 111.
    [14] LIU B G, LI W, LU X W, et al. The effect of retained austenite stability on impact-abrasion wear resistance in carbide-free bainitic steels[J] . Wear,2019,428-429(8):127 − 136.
    [15] DAN W J, LIN Z Q, LI S H, et al. Study on the mixture strain hardening of multi-phase steels[J] . Materials Science & Engineering A,2012,552(34):1 − 8.
    [16] YANG J L, HUANG F, GUO Z H, et al. Effect of retained austenite on the hydrogen embrittlement of a medium carbon quenching and partitioning steel with refined microstructure[J] . Materials Science & Engineering A,2016,665(4):76 − 85.
  • 加载中
图(11) / 表(2)
计量
  • 文章访问数:  505
  • HTML全文浏览量:  341
  • PDF下载量:  207
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-11-12
  • 刊出日期:  2021-09-30

目录

    /

    返回文章
    返回