留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不同方法制备La2O2CO3/ZnO催化乙醇转化的研究:孔结构和表面碱性的影响

虞鸿雁 SHINEunwoo 门勇

虞鸿雁, SHINEunwoo, 门勇. 不同方法制备La2O2CO3/ZnO催化乙醇转化的研究:孔结构和表面碱性的影响[J]. 上海工程技术大学学报, 2021, 35(3): 253-258.
引用本文: 虞鸿雁, SHINEunwoo, 门勇. 不同方法制备La2O2CO3/ZnO催化乙醇转化的研究:孔结构和表面碱性的影响[J]. 上海工程技术大学学报, 2021, 35(3): 253-258.
YU Hongyan, SHIN Eunwoo, MEN Yong. Ethanol conversion over La2O2CO3/ZnO catalysts prepared by two methods: Effect of macroporous structure and basic sites[J]. Journal of Shanghai University of Engineering Science, 2021, 35(3): 253-258.
Citation: YU Hongyan, SHIN Eunwoo, MEN Yong. Ethanol conversion over La2O2CO3/ZnO catalysts prepared by two methods: Effect of macroporous structure and basic sites[J]. Journal of Shanghai University of Engineering Science, 2021, 35(3): 253-258.

不同方法制备La2O2CO3/ZnO催化乙醇转化的研究:孔结构和表面碱性的影响

基金项目: 上海市科委部分地方院校能力建设资助项目(18030501100);State Key Laboratory of Heavy Oil Processing;上海工程技术大学韩国蔚山大学联合培养资助项目
详细信息
    作者简介:

    虞鸿雁(1993−),女,在读博士生,研究方向为工业催化. E-mail:yuyubobo0908@163.com

    通讯作者:

    门 勇(1973−),男,教授,博士,研究方向为工业催化. E-mail:men@sues.edu.cn

  • 中图分类号: O643.32

Ethanol conversion over La2O2CO3/ZnO catalysts prepared by two methods: Effect of macroporous structure and basic sites

  • 摘要: 利用共沉淀法和乙二醇燃烧法制备La2O2CO3/ZnO两种催化剂,评价其对生物乙醇脱氢生成乙醛的催化活性,并采用FE−SEM, HR−TEM, FT−IR, XRD, BET,CO2−TPD等研究手段对催化剂的形貌及表面碱性等物相结构进行表征. 结果表明,制备方法对催化剂形貌以及性能影响十分明显,乙二醇燃烧法形成的大孔结构有助于乙醇的转化,同时产物乙醛的选择性与催化剂表面碱性有关.
  • 图  1  样品的XRD图谱

    Figure  1.  XRD pattern of samples

    图  2  样品的FTIR图谱

    Figure  2.  FTIR spectra of samples

    图  3  样品的N2吸附–解吸等温线

    Figure  3.  Nitrogen adsorption-desorption isotherms of samples

    图  4  样品的FE−SEM图像

    Figure  4.  FE−SEM images

    图  5  样品的FE–TEM图像

    Figure  5.  FE–TEM images of samples

    图  6  CO2 程序升温脱附图

    Figure  6.  CO2–TPD profiles

    图  7  La2O2CO3 / ZnO对乙醇的催化转化活性图

    Figure  7.  Catalytic performance diagrams of La2O2CO3 / ZnO on bio-ethanol

    图  8  La2O2CO3 / ZnO对乙醇的催化反应机理示意图

    Figure  8.  Schematic of catalytic mechanism of La2O2CO3 / ZnO on ethanol

  • [1] GONZALEZ-GARCIA S, LOU L, MOREIRA M T, et al. Life cycle assessment of hemp hurds use in second generation ethanol production[J] . Biomass & Bioenergy,2012,36:268 − 279.
    [2] JOHN R P, ANISHA G S, NAMPOOTHIRI K M, et al. Micro and macroalgal biomass: A renewable source for bioethanol[J] . Bioresource Technology,2011,102(1):186 − 193. doi: 10.1016/j.biortech.2010.06.139
    [3] GHASEMZADEH K, JALILNEJAD E, BASILE A. 3-Production of bioalcohol and biomethane[J] . Bioenergy Systems for the Future,2017:61 − 86.
    [4] PAMPARARO G, GARBARINO G, RIANI P, et al. A study of ethanol dehydrogenation to acetaldehyde over supported copper catalysts: catalytic activity, deactivation and regeneration[J] . Applied Catalysis A: General,2020, 602:117710.
    [5] MOSTROU S, SIPŐCZ T, NAGL A, et al. Catalytic oxidation of aqueous bioethanol: An efficient upgrade from batch to flow[J] . Reaction Chemistry & Engineering,2018,3(5):781 − 789.
    [6] HAGEMEYER H J. Kirk-Othmer Encyclopedia of Chemical Technology[M]. 5th Edition. Hoboken: John Wiley & Sons, 2002: 564 − 575.
    [7] GUAN Y, HENSEN E J M. Ethanol dehydrogenation by gold catalysts: The effect of the gold particle size and the presence of oxygen[J] . Applied Catalysis A: General,2009,361(1/2):49 − 56.
    [8] CHANG F W, YANG H C, ROSELIN L S, et al. Ethanol dehydrogenation over copper catalysts on rice husk ash prepared by ion exchange[J] . Applied Catalysis A General,2006,304:30 − 39. doi: 10.1016/j.apcata.2006.02.017
    [9] LI S X, MEN Y, WANG J G, et al. Morphological control of inverted MgO-SiO2 composite catalysts for efficient conversion of ethanol to 1, 3-butadiene[J] . Applied Catalysis A General,2019,577:1 − 9. doi: 10.1016/j.apcata.2019.03.007
    [10] WANG X F, MEN Y, WANG J G, et al. The influence of zinc loadings on the selectivity control of bio-ethanol transformation over MgO-SiO2 catalysts[J]. Applied Catalysis A: General, 2020, 598: 117565. DOI: 10.1016/j.apcata.2020.117565
    [11] SATO A G, VOLANTI D P, FREITAS I, et al. Site-selective ethanol conversion over supported copper catalysts[J] . Catalysis Communications,2012,26:122 − 126. doi: 10.1016/j.catcom.2012.05.008
    [12] FREITAS I C, DAMYANOVA S, OLIVEIRA D C, et al. Effect of Cu content on the surface and catalytic properties of Cu/ZrO2 catalyst for ethanol dehydrogenation[J] . Journal of Molecular Catalysis A: Chemical,2014,381(1):26 − 37.
    [13] DEWILDE J F, CZOPINSKI C J, BHAN A. Ethanol dehydration and dehydrogenation on γ-Al2O3: Mechanism of acetaldehyde formation[J] . ACS Catalysis,2014,4(12):4425 − 4433. doi: 10.1021/cs501239x
    [14] SKINNER M J, MICHOR E L, FAN W, et al. Ethanol dehydration to ethylene in a stratified autothermal millisecond reactor[J] . ChemSusChem,2011,4(8):1151 − 1156. doi: 10.1002/cssc.201100026
    [15] AUTTHANIT C, JONGSOMJIT B. Production of Ethylene through Ethanol Dehydration on SBA-15 Catalysts Synthesized by Sol-gel and One-step Hydrothermal Methods[J] . Journal of oleo science,2018,67(2):235 − 243. doi: 10.5650/jos.ess17167
    [16] LA-SALVIA N, LOVON-QUINTANA JJ, VALENCA GP. Vapor-Phase Catalytic Conversion of Ethanol into 1, 3-Butadiene on Cr-Ba/MCM-41 Catalysts[J] . Brazilian Journal of Chemical Engineering,2015,32(2):489 − 500. doi: 10.1590/0104-6632.20150322s00003039
    [17] DING D G, LU W B, XIONG Y, et al. Facile synthesis of La2O2CO3 nanoparticle films and Its CO2 sensing properties and mechanisms[J] . Applied Surface Science,2017,426 (31):725 − 733. doi: 10.1016/j.apsusc.2017.07.126
    [18] PARK C Y, NGUYEN-PHU H, SHIN E W. Glycerol carbonation with CO2 and La2O2CO3/ZnO catalysts prepared by two different methods: Preferred reaction route depending on crystalline structure[J] . Molecular Catalysis,2017,435:99 − 109. doi: 10.1016/j.mcat.2017.03.025
    [19] LI H G, GAO D Z, GAO P, et al. The synthesis of glycerol carbonate from glycerol and CO2 over La2O2CO3-ZnO catalysts[J] . Catalysis Science & Technology,2013,3:2801 − 2814.
    [20] LI H, Xi J, Lei L, et al. Synthesis of glycerol carbonate by direct carbonylation of glycerol with CO2 over solid catalysts derived from Zn/Al/La and Zn/Al/La/M (M = Li, Mg and Zr) hydrotalcites[J] . Catalysis Science & Technology,2015,5:989 − 996.
    [21] JIN L, ZHANG Y, DOMBROWSKI J P, et al. ZnO/La2O2CO3 layered composite: A new heterogeneous catalyst for the efficient ultra-fast microwave biofuel production[J] . Applied Catalysis B Environmental,2011,103(1/2):200 − 205. doi: 10.1016/j.apcatb.2011.01.027
    [22] ZHANG G, ZHAO Z, LIU J, et al. Macroporous perovskite-type complex oxide catalysts of La1– xKxCo1– yFeyO3 for diesel soot combustion[J] . Journal of Rare Earths,2009,27(6):955 − 960. doi: 10.1016/S1002-0721(08)60369-5
    [23] YU H Y, MEN Y, SHIN E W. Structural properties of disordered macroporous La2O2CO3/ZnO materials prepared by a solution combustion method[J] . Korean Journal of Chemical Engineering,2019,36(4):522 − 528. doi: 10.1007/s11814-019-0239-5
    [24] IRUSTA S, CORNAGLIA L M, LOM BA RDO E A. Effects of rhodium and platinum on the reactivity of lanthanum phases[J] . Materials Chemistry & Physics,2004,86(2/3):440 − 447.
    [25] TURCOTTE R P, SAWYER J O, EYRING L R. On the rare earth dioxymonocarbonates and their decomposition[J] . Inorganic Chemistry,1969,8(2):238 − 246. doi: 10.1021/ic50072a012
    [26] LEVAN T, CHE M, TATIBOUET J M, et al. Infrared study of the formation and stability of La2O2CO3 during the oxidative coupling of methane on La2O3[J] . Journal of Catalysis,1993,142(1):18 − 26. doi: 10.1006/jcat.1993.1185
    [27] NI J, CHEN L, LIN J, et al. High performance of Mg-La mixed oxides supported Ni catalysts for dry reforming of methane: The effect of crystal structure[J] . International Journal of Hydrogen Energy,2013,38(31):13631 − 13642. doi: 10.1016/j.ijhydene.2013.08.041
    [28] PAKHARE D, SCHWARTZ V, ABDELSAYED V, et al. Kinetic and mechanistic study of dry (CO2) reforming of methane over ROOH-substituted La2Zr2O7 pyrochlores[J] . Journal of Catalysis,2014,316:78 − 92. doi: 10.1016/j.jcat.2014.04.023
    [29] KVISLE S, AGUERO A, SNEEDEN R. Transformation of ethanol into 1, 3-butadiene over magnesium oxide/silica catalysts[J] . Applied Catalysis,1988,43(1):117 − 131. doi: 10.1016/S0166-9834(00)80905-7
  • 加载中
图(8)
计量
  • 文章访问数:  334
  • HTML全文浏览量:  317
  • PDF下载量:  296
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-28
  • 刊出日期:  2021-09-30

目录

    /

    返回文章
    返回