Objective Bayesian analysis of mixture cure model based on exponential distribution
-
摘要: 提出基于指数分布的混合治愈模型,通过引入隐变量,利用完全似然函数比较容易计算Fisher信息矩阵,推导出参数的Jeffreys先验和reference先验,并验证后验分布的恰当性. 研究结果表明,客观贝叶斯方法对参数的估计效果很好,特别是在样本量小时比较明显.
-
关键词:
- 混合治愈模型 /
- 客观贝叶斯分析 /
- Jeffreys先验 /
- reference先验
Abstract: A mixture cure model based on exponential distribution was proposed. By using full likelihood function and latent variables, it was easy to calculate Fisher information matrix, drive Jeffreys prior and reference priors, and the appropriateness of posterior distribution was verified. The results show that the objective Bayesian method has a good effect on parameter estimation, especially when the sample size is small.-
Key words:
- mixture cure model /
- objective Bayesian analysis /
- Jeffreys prior /
- reference prior
-
表 1 客观贝叶斯估计下的估计偏差
Table 1. Bias under objective Bayesian estimation
$n$ 先验 $p = 0.3$ $\lambda = 3$ $p = 0.3$ $\lambda = 4$ $p = 0.4$ $\lambda = 4$ 20 ${\pi _J}$ −0.025 0.141 −0.024 0.154 −0.008 0.085 ${\pi _R}$ 0.016 −0.095 −0.018 0.137 0.006 0.065 50 ${\pi _J}$ −0.018 0.134 −0.022 0.144 −0.005 0.078 ${\pi _R}$ 0.015 0.087 −0.016 0.135 0.004 0.064 表 2 客观贝叶斯估计下均方误差
Table 2. RMSE under objective Bayesian estimation
$n$ 先验 $p = 0.3$ $\lambda = 3$ $p = 0.3$ $\lambda = 4$ $p = 0.4$ $\lambda = 4$ 20 $ {\pi _J} $ 0.031 0.059 0.019 0.075 0.022 0.051 $ {\pi _R} $ 0.028 0.044 0.016 0.072 0.015 0.032 50 $ {\pi _J} $ 0.027 0.056 0.018 0.071 0.022 0.048 $ {\pi _R} $ 0.024 0.047 0.015 0.068 0.014 0.030 表 3 客观贝叶斯估计的95%覆盖率
Table 3. 95% coverage probabilities under objective Bayesian estimation
$n$ 先验 $p = 0.3$ $\lambda = 3$ $p = 0.3$ $\lambda = 4$ $p = 0.4$ $\lambda = 4$ 20 $ {\pi _J} $ 0.945 0.957 0.956 0.954 0.961 0.958 $ {\pi _R} $ 0.947 0.955 0.954 0.953 0.955 0.946 50 $ {\pi _J} $ 0.946 0.956 0.955 0.953 0.958 0.957 $ {\pi _R} $ 0.947 0.954 0.952 0.952 0.953 0.947 -
[1] 肖翔. 0−1膨胀几何分布回归模型及其应用[J] . 系统科学与数学,2019,39(9):1486 − 1499. doi: 10.12341/jssms13723 [2] 肖翔, 刘福窑. 零膨胀几何分布的参数估计[J] . 上海工程技术大学学报,2018,32(3):267 − 271. doi: 10.3969/j.issn.1009-444X.2018.03.013 [3] 肖翔, 古晞. 0−1膨胀几何分布的客观贝叶斯分析[J] . 上海工程技术大学报,2021,35(3):202 − 207. [4] 张良超, 周金亮, 温利民. 零膨胀泊松模型中风险参数的贝叶斯估计[J] . 江西师范大学学报(自然科学版),2020(3):269 − 274. [5] BOAG J W. Maximum likelihood estimates of the proportion of patients cured by cancer therapy[J] . Journal of the Royal Statistical Society Series B (Methodological),1949,11(1):15 − 53. doi: 10.1111/j.2517-6161.1949.tb00020.x [6] FAREWELL V T. The use of mixture models for the analysis of survival data with long-term survivors[J] . Biometrics,1982:1041 − 1046. [7] GHITANY M, MALLER R A, ZHOU S. Exponential mixture models with long-term survivors and covariates[J] . Journal of Multivariate Analysis,1994,49(2):218 − 241. doi: 10.1006/jmva.1994.1023 [8] TAYLOR J M. Semi-parametric estimation in failure time mixture models[J] . Biometrics,1995:899 − 907. [9] PENG Y W, DEAR K B. A nonparametric mixture model for cure rate estimation[J] . Biometrics,2000,56(1):237 − 243. doi: 10.1111/j.0006-341X.2000.00237.x [10] ZHOU J, ZHANG J J, MCLAIN A C, et al. A multiple imputation approach for semiparametric cure model with interval censored data[J] . Computational Statistics & Data Analysis,2016,99:105 − 114. [11] DIAO G, YUAN A. A class of semiparametric cure models with current status data[J] . Lifetime Data Analysis,2019,25:26 − 51. doi: 10.1007/s10985-018-9420-0 [12] LAM K F, LEE C Y, WONG K Y, et al. Marginal analysis of current status data with informative cluster size using a class of semiparametric transformation cure models[J] . Statistics in Medicine,2021,40(10):2400 − 2412. doi: 10.1002/sim.8910 [13] 茆诗松, 汤银才. 贝叶斯统计[M]. 2版. 北京: 中国统计出版社, 2012. [14] BERGER J O, BERNARDO J M. On the development of the reference prior method[J] . Bayesian Statistics,1992a,4(4):35 − 60.