留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

焊接凝固过程中微观组织演变研究方法进展

金铄德 何建萍 潘雪航

金铄德, 何建萍, 潘雪航. 焊接凝固过程中微观组织演变研究方法进展[J]. 上海工程技术大学学报, 2021, 35(4): 305-314.
引用本文: 金铄德, 何建萍, 潘雪航. 焊接凝固过程中微观组织演变研究方法进展[J]. 上海工程技术大学学报, 2021, 35(4): 305-314.
JIN Shuode, HE Jianping, PAN Xuehang. Progress in research methods of microstructure evolution during welding solidification[J]. Journal of Shanghai University of Engineering Science, 2021, 35(4): 305-314.
Citation: JIN Shuode, HE Jianping, PAN Xuehang. Progress in research methods of microstructure evolution during welding solidification[J]. Journal of Shanghai University of Engineering Science, 2021, 35(4): 305-314.

焊接凝固过程中微观组织演变研究方法进展

基金项目: 国家自然科学基金资助项目(51775327);上海市科委基础研究重点资助项目(14JC1402700)
详细信息
    作者简介:

    金铄德(1997−),男,在读硕士,研究方向为微束等离子弧焊过程中微观组织演变. E-mail:M050119369@sues.edu.cn

    通讯作者:

    何建萍(1964−),女,教授,博士,研究方向为精密焊接过程的机电光一体化复杂系统的智能化控制.E-mail:janejphe@sues.edu.cn

  • 中图分类号: TG401

Progress in research methods of microstructure evolution during welding solidification

  • 摘要: 在焊接凝固过程中微观组织演变会影响焊接接头最终的微观组织形貌,进而影响焊接接头的力学性能. 对焊接凝固过程中微观组织演变研究方法进行全面探讨,首先讨论基于实验的微观组织演变研究方法包括Gleeble热模拟实验法、焊接接头不同区域微观组织比对的微观组织演变分析方法、基于化学成分改变的微观组织演变分析方法以及同步辐射原位观察法. 进一步讨论基于理论的分析方法包括相场法、元胞自动机法、蒙特卡罗法,得出这7种研究微观组织演变的方法各有其优势和局限性.
  • 图  1  相场变量$ \phi $的物理含义

    Figure  1.  Physical meaning of Phase-field variables $ \phi $

    图  2  TC4合金在焊缝熔池中的显微照片[33]

    Figure  2.  Micrograph of TC4 alloy in weld pool[33]

    图  3  晶粒结构的MC模型

    Figure  3.  Monte Carlo model of grain structure

    图  4  模拟得到的不同搅拌头磨损情况下FSW中SZ区域的晶粒尺寸[46]

    Figure  4.  Predicted grain morphologies in FSW with worn tools[46]

  • [1] 张文钺. 焊接冶金学(基本原理)[M]. 北京: 机械工业出版社, 2003: 16.
    [2] CHEN S J, ZHAO L B, WANG J J, et al. Microstructure evolution and mechanical properties of simulated HAZ in a Ni-17Mo-7Cr superalloy: effects of the welding thermal cycles[J] . Journal of Materials Science,2020,55(27):13372 − 13388. doi: 10.1007/s10853-020-04927-6
    [3] ZHANG J, XIN W B, LUO G P, et al. Effect of welding heat input on microstructural evolution, precipitation behavior and resultant properties of the simulated CGHAZ in high-N V-alloyed steel[J] . Materials Characterization,2020,162:110201. doi: 10.1016/j.matchar.2020.110201
    [4] YU F Y, WEI Y H, LIU X B. The evolution of polycrystalline solidification in the entire weld: A phase-field investigation[J] . International Journal of Heat and Mass Transfer,2019,142:118450. doi: 10.1016/j.ijheatmasstransfer.2019.118450
    [5] BEHNAGH R A, SAMANTA A, POUR M A M, et al. Predicting microstructure evolution for friction stir extrusion using a cellular automaton method[J] . Modelling and Simulation in Materials Science and Engineering,2019,27(3):1.
    [6] ZHANG Z, HU C P. 3D Monte Carlo simulation of grain growth in friction stir welding[J] . Journal of Mechanical Science and Technology,2018,32(3):1287 − 1296. doi: 10.1007/s12206-018-0233-6
    [7] WANG L W, LIU Z Y, CUI Z Y, et al. In situ corrosion characterization of simulated weld heat affected zone on API X80 pipeline steel[J] . Corrosion Science,2014,85:401 − 410. doi: 10.1016/j.corsci.2014.04.053
    [8] RECCAGNI P, GUILHERME L H, LU Q, et al. Reduction of austenite-ferrite galvanic activity in the heat-affected zone of a Gleeble-simulated grade 2205 duplex stainless steel weld[J] . Corrosion Science,2019,161:108198. doi: 10.1016/j.corsci.2019.108198
    [9] POPOOLAA A P I, OLUWASRGUN K M, OLORUNNIWO O E, et al. Thermal and mechanical effect during rapid heating of astroloy for improving structural integrity[J] . Journal of Alloys and Compounds,2016,666:482 − 492. doi: 10.1016/j.jallcom.2016.01.012
    [10] SKLENICKA V, KUCHAROVA K, SVOBODA M, et al. Creep behaviour of IN 740 alloy after HAZ thermal cycle simulations[J] . International Journal of Pressure Vessels and Piping,2019,178:104000. doi: 10.1016/j.ijpvp.2019.104000
    [11] JEONG S, PARK G, KIM B, et al. Precipitation behavior and its effect on mechanical properties in weld heat-affected zone in age hardened FeMnAlC lightweight steels[J] . Materials Science and Engineering:A,2019,742:61 − 68.
    [12] KUMAR K, MASANTA M, KUMAR SAHOO S. Microstructure evolution and metallurgical characteristic of bead-on-plate TIG welding of Ti-6Al-4V alloy[J] . Journal of Materials Processing Technology,2019,265:34 − 43. doi: 10.1016/j.jmatprotec.2018.10.002
    [13] KAR A, YADAV D, SUWAS S, et al. Role of plastic deformation mechanisms during the microstructural evolution and intermetallics formation in dissimilar friction stir weld[J] . Materials Characterization,2020,164:110371. doi: 10.1016/j.matchar.2020.110371
    [14] 孙景峰, 郑子樵, 林毅, 等. 2060合金FSW接头微观组织与力学性能[J] . 中国有色金属学报,2014,24(2):364 − 370.
    [15] 杜波, 孙转平, 杨新岐, 等. 异种铝合金摩擦塞补焊接头微观组织及性能[J] . 机械工程学报,2017,53(4):43 − 48.
    [16] ZHANG J, LENG J, WANG C. Tuning weld metal mechanical responses via welding flux optimization of TiO2 content: Application into EH36 shipbuilding steel[J] . Metallurgical and Materials Transactions B,2019,50(5):2083 − 2087. doi: 10.1007/s11663-019-01645-6
    [17] GAO Y A, HUANG L J, AN Q, et al. Microstructure evolution and mechanical properties of titanium matrix composites and Ni-based superalloy joints with Cu interlayer[J] . Journal of Alloys and Compounds,2018,764:665 − 673. doi: 10.1016/j.jallcom.2018.06.107
    [18] LIU J, LIU H, GAO X L, et al. Microstructure and mechanical properties of laser welding of Ti-6Al-4V to Inconel 718 using Nb/Cu interlayer[J] . Journal of Materials Processing Technology,2020,277:116467. doi: 10.1016/j.jmatprotec.2019.116467
    [19] 张丽娟, 周惦武, 刘金水, 等. 钢/铝异种金属添加粉末的激光焊接[J] . 中国有色金属学报,2013,23(12):3401 − 3409.
    [20] 王鹏潇. 5052铝合金/钢熔钎焊界面反应行为的研究[D]. 大连: 大连理工大学, 2019.
    [21] 范萌. 窄间距Cu/Sn-3.0Ag-0.5Cu/Ni焊点液-固界面反应[D]. 大连: 大连理工大学, 2017.
    [22] LANGER J S. Models of pattern formation in first-order phase transitions, chapter of Directions in Condensed Matter Physics [M]. Singapore: World Scientific, 1986.
    [23] BECKERMANN C, DIEPERS H J, STEINBACH I, et al. Modeling melt convection in phase-field simulations of solidification[J] . Journal of Computational Physics,1999,154(2):468 − 496.
    [24] BAILEY N S, HONG K M, SHIN Y C. Comparative assessment of dendrite growth and microstructure predictions during laser welding of Al 6061 via 2D and 3D phase field models[J] . Computational Materials Science,2020,172:109291. doi: 10.1016/j.commatsci.2019.109291
    [25] 魏艳红, 王勇, 董志波, 等. 纯金属TIG焊熔池等轴晶生长的相场法模拟[J] . 焊接学报,2011,32(3):1 − 4, 8, 113.
    [26] AHLUWALIA R, LASKOWSKI R, NG N, et al. Phase Field Simulation of alpha/beta microstructure in titanium alloy welds[J] . Materials Research Express,2020,7(4):046517. doi: 10.1088/2053-1591/ab875a
    [27] CHEN L, WANG C M, XIONG L D, et al. Microstructural, porosity and mechanical properties of lap joint laser welding for 5182 and 6061 dissimilar aluminum alloys under different place configurations[J] . Materials & Design,2020,191:108625.
    [28] GENG S N, JIANG P, GUO L Y, et al. Multi-scale simulation of grain/sub-grain structure evolution during solidification in laser welding of aluminum alloys[J] . International Journal of Heat and Mass Transfer,2020,149:119252. doi: 10.1016/j.ijheatmasstransfer.2019.119252
    [29] CHOPARD B, DROZ M. 物理系统的元胞自动机模拟. 祝玉学, 赵学龙译[M]. 北京: 清华大学出版社, 2003.
    [30] WU H, XU W C, WANG S B, et al. A cellular automaton coupled FEA model for hot deformation behavior of AZ61 magnesium alloys[J] . Journal of Alloys and Compounds,2020,816:152562. doi: 10.1016/j.jallcom.2019.152562
    [31] ALAVI P, SERAJZADEH S. Microstructural changes during static recrystallization of austenitic stainless steel 304L: Cellular automata simulation[J] . Metallography, Microstructure, and Analysis,2020,9(2):223 − 238.
    [32] STEFAN-KHARICHA M, KHARICHA A, ZAIDAT K, et al. Impact of hydrodynamics on growth and morphology of faceted crystals[J] . Journal of Crystal Growth,2020,541:125667. doi: 10.1016/j.jcrysgro.2020.125667
    [33] ZHANG M, ZHOU Y L, HUANG C, et al. Simulation of temperature distribution and microstructure evolution in the molten pool of GTAW Ti-6Al-4V Alloy[J] . Materials,2018,11(11):2288. doi: 10.3390/ma11112288
    [34] 刘仁培, 陈莉莉, 魏艳红. 镍基合金TIG焊接熔池及热影响区组织模拟[J] . 焊接学报,2020,41(3):64 − 68, 100.
    [35] ASADI P, BESHARATI GIVI M K, AKBARI M. Simulation of dynamic recrystallization process during friction stir welding of AZ91 magnesium alloy[J] . International Journal of Advanced Manufacturing Technology,2016,83(1-4):301 − 311. doi: 10.1007/s00170-015-7595-z
    [36] 王忠堂, 张宏亮, 杨君宝, 等. 基于元胞自动机的AZ31镁合金复合变形动态再结晶组织演变规律[J] . 塑性工程学报,2020,27(5):161 − 166. doi: 10.3969/j.issn.1007-2012.2020.05.020
    [37] ROLLETT A D, SROLOVITZ D J, DOHERTY R D, et al. Computer simulation of recrystallization in non-uniformly deformed metals[J] . Acta Metallurgica,1989,37(2):627 − 639. doi: 10.1016/0001-6160(89)90247-2
    [38] SROLOVITZ D J, ANDERSON M P, SAHNI P S, et al. Computer simulation of grain growth–II. grain size distribution, topology, and local dynamics[J] . Acta Metallurgica,1984,32(5):793 − 802. doi: 10.1016/0001-6160(84)90152-4
    [39] LING S, ANDERSON M P. Development and evolution of thin film microstructures: A Monte Carlo approach[J] . Journal of Electronic Materials,1988,17(5):459 − 466. doi: 10.1007/BF02652133
    [40] CHRISTIAEN B, DOMAIN C, THUINET L, et al. Influence of vacancy diffusional anisotropy: Understanding the growth of zirconium alloys under irradiation and their microstructure evolution[J] . Acta Materialia,2020,195:631 − 644. doi: 10.1016/j.actamat.2020.06.004
    [41] TRAN A, MITCHELL J A, SWILER L P, et al. An active learning high-throughput microstructure calibration framework for solving inverse structure-process problems in materials informatics[J] . Acta Materialia,2020,194:80 − 92. doi: 10.1016/j.actamat.2020.04.054
    [42] CHEN K T, HAN J, SROLOVITZ D J. On the temperature dependence of grain boundary mobility[J] . Acta Materialia,2020,194:412 − 421. doi: 10.1016/j.actamat.2020.04.057
    [43] SON Y, CHUNG H B, LEE S. A two-dimensional Monte Carlo model for pore densification in a bi-crystal via grain boundary diffusion: Effect of diffusion rate, initial pore distance, temperature, boundary energy and number of pores[J] . Journal of the European Ceramic Society,2020,40(8):3158 − 3171. doi: 10.1016/j.jeurceramsoc.2020.02.022
    [44] 杨亮, 魏承炀, 雷力明, 等. 两相钛合金再结晶退火组织与织构演变的蒙特卡罗模拟[J] . 物理学报,2013,62(18):348 − 356.
    [45] GRUJICIC M, RAMASWAMI S, SNIPES J S, et al. Prediction of the grain-microstructure evolution within a friction stir welding (FSW) joint via the use of the Monte Carlo simulation method[J] . Journal of Materials Engineering & Performance,2015,24(9):3471 − 3486.
    [46] ZHANG Z, TAN Z J. Integrated modelling of tool wear and microstructural evolution internal relations in friction stir welding with worn pin profiles[J] . Journal of Mechanics of Materials and Structures,2019,14(4):537 − 548. doi: 10.2140/jomms.2019.14.537
    [47] RODGERS T M, MITCHELL J A, TIKARE V. A Monte Carlo model for 3D grain evolution during welding[J] . Modelling and Simulation in Materials Science and Engineering,2017,25(6):064006. doi: 10.1088/1361-651X/aa7f20
  • 加载中
图(4)
计量
  • 文章访问数:  616
  • HTML全文浏览量:  569
  • PDF下载量:  739
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-24
  • 刊出日期:  2022-02-23

目录

    /

    返回文章
    返回