Application of 3D tube in automotive body structure lightweight
-
摘要:
在汽车轻量化趋势下,车身的轻量化依然十分重要. 分别从国内外研究现状、结构设计、结构分析、质量对比分析几方面研究汽车上车身局部结构的轻量化. 以本田思域2016款车身结构为研究对象,采用超高强钢辊压成型三维管梁替换车身A柱、车顶纵梁内部热成型冲压加强板. 参考国标GB 26134—2010施加车顶抗压试验工况,保证优化后结构的车顶抗压性能与原结构相当,通过对比质量,得出集成三维管梁的新设计对车身的轻量化效果. 研究结果表明:当三维管梁板材厚度为1 mm、材料为1 700 MPa马氏体钢时,新结构弯曲刚度和强度性能与原结构基本一致,且实现车身减重3.23 kg,轻量化效果明显.
Abstract:Under the tendency of automotive lightweight, the Body in White (BIW) light weighting job is still significantly meaningful. From aspects of the domestic and abroad research status, structure design, structural analysis, mass comparison analysis, the lightweight of the local structure on car upper body was studied. By incorporating ultra-high-strength steel roll forming 3D tube into Honda Civic 2016 A-pillar and roof rail structure, the original hot stamping reinforcements were replaced. Based on the roof crush test referring to GB 26134—2010, the roof crush performance of the optimized structure was need to be equivalent to the original structure. By comparing the quality, the lightweight effect of the new design with 3D tube inside of the body was obtained. The results prove that new structure with 1 mm gauge and 1 700 MPa Martensitic steel 3D tube shows equal bending stiffness and strength with original structure. A significant mass reduction of 3.23 kg per car can be achieved.
-
Key words:
- ultra-high strength steel /
- roll forming /
- 3D tube /
- lightweight
-
图 5 车顶抗压试验工况[13]
Figure 5. Roof crush test scenario
表 1 原设计与新设计质量对比
Table 1. Weight comparison analysis-original and new design
参数 原设计 新设计 A柱加强板 车顶纵梁加强板 三维管梁 材料厚度/mm 1.76 1.67 1.00 抗拉强度/MPa 1483 1224 1808 生产工艺 热冲压 热冲压 辊压+三维弯曲 质量/kg 0.99 2.45 1.82 表 2 仿真试验性能与质量汇总表
Table 2. Performance and weight summary of simulation experiment
仿真参数 原设计 新设计 变化率/% 加载1.5倍空载车重时的位移/mm 21.0 15.7 25.2 最大载荷/kN 51.1 50.5 −1.2 平均载荷力/kN 36.5 38.3 4.9 有效减重
(kg/car)6.88 3.65 47.0 -
[1] 王帅. 汽车轻量化现状和发展趋势分析[J] . 汽车实用技术,2019(11):242 − 245. [2] 王娜, 李稚凡, 陈新平. 超高强度钢DP1000液压成形A柱的关键技术[J] . 精密成形工程,2017,9(6):6 − 10. doi: 10.3969/j.issn.1674-6457.2017.06.002 [3] 陈汉杰, 朱正龙. 真空热压一体式激光拼焊门环轻量化设计[J] . 锻造与冲压,2020(8):31 − 35. [4] 陈新. 基于顶压及侧碰安全性的B柱结构优化设计[D]. 长沙: 湖南大学, 2012. [5] 汪伟康. 汽车顶盖性能分析与试验研究[D]. 合肥: 合肥工业大学, 2016. [6] 赵光磊. 泡沫铝夹层板在汽车侧碰耐撞性中的应用研究[D]. 哈尔滨: 哈尔滨工业大学, 2017. [7] 中国保险汽车安全指数管理中心. 中国保险汽车安全指数2019年测评结果研究报告[R/OL]. (2020-05-10)[2022-01-18]. http://www.ciasi.org.cn/download-list?type_id=126. [8] LEE Y, HAN Y H, PARK S O, et al. Vehicle crash optimization considering a roof crush test and a side impact test[J] . Institution of Mechanical Engineers, Part D:Journal of Automobile Engineering,2019,233(10):2455 − 2466. doi: 10.1177/0954407018794259 [9] BORAZJANI S, BELINGARDI G. Development of an innovative design of a composite-sandwich based vehicle roof structure[J] . Composite Structures,2017,168:522 − 534. doi: 10.1016/j.compstruct.2017.02.015 [10] HAUSLER H, REED J. A-pillar structure for an automotive vehicle: US7344186[P]. 2008−03−18. [11] EVA P, ANNA R. Shape Corp. wins Swedish Steel Price 2019[EB/OL]. (2019−11−15)[2022-01-18]. http://www.ins-news.com/en/100/870/2669/Shape-Corp-wins-Swedish-Steel-Prize-2019.htm. [12] SSAB Group. Data sheet 2137 Docol 1700 M[EB/OL]. (2019−11−26)[2021−01−18]. https://www.ssab.cn/products/brands/docol/products/docol-1700m. [13] 中华人民共和国国家质量监督检验检疫总局、中国国家标准化管理委员会. 乘用车顶部抗压强度: GB 26134—2010[S]. 北京: 中国标准出版社, 2012.