留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于LTNE的二维饱和多孔介质平板热流固完全耦合数值分析

戴倩 岳飞龙 李培超

戴倩, 岳飞龙, 李培超. 基于LTNE的二维饱和多孔介质平板热流固完全耦合数值分析[J]. 上海工程技术大学学报, 2022, 36(1): 83-90. doi: 10.12299/jsues.21-0134
引用本文: 戴倩, 岳飞龙, 李培超. 基于LTNE的二维饱和多孔介质平板热流固完全耦合数值分析[J]. 上海工程技术大学学报, 2022, 36(1): 83-90. doi: 10.12299/jsues.21-0134
DAI Qian, YUE Feilong, LI Peichao. Numerical analysis of fully coupled thermoporoelastic behavior of two-dimensional saturated porous media flat plate under LTNE condition[J]. Journal of Shanghai University of Engineering Science, 2022, 36(1): 83-90. doi: 10.12299/jsues.21-0134
Citation: DAI Qian, YUE Feilong, LI Peichao. Numerical analysis of fully coupled thermoporoelastic behavior of two-dimensional saturated porous media flat plate under LTNE condition[J]. Journal of Shanghai University of Engineering Science, 2022, 36(1): 83-90. doi: 10.12299/jsues.21-0134

基于LTNE的二维饱和多孔介质平板热流固完全耦合数值分析

doi: 10.12299/jsues.21-0134
基金项目: 上海市自然科学基金资助(19ZR1421400)
详细信息
    作者简介:

    戴倩:戴 倩(1994−),女,在读硕士,研究方向为多孔介质多场耦合数值模拟. E-mail: dq15152616606@163.com

    通讯作者:

    李培超(1976−),男,副教授,博士,研究方向为多场耦合力学、渗流力学、多孔介质传热传质基础理论和数值分析. E-mail: wiselee18@163.com

  • 中图分类号: O357.3

Numerical analysis of fully coupled thermoporoelastic behavior of two-dimensional saturated porous media flat plate under LTNE condition

  • 摘要:

    针对目前多孔介质热流固耦合数学模型多为不完全耦合模型,且物理模型多为一维或一维轴对称模型的现状,对二维饱和多孔介质平板热流固完全耦合问题进行数学建模和数值分析. 采用强耦合方式实现热流固3个物理场的完全耦合. 在平板左侧施加30 ℃流体和固体温度边界条件及固定位移边界条件,平板其他边界温度场和位移场假设为自然边界条件,平板四周加载0 Pa的孔隙压力边界条件. 利用COMSOL Multiphysics有限元分析软件的偏微分方程(PDEs)模式实现上述完全耦合模型的求解,得到渗流场、应变场以及双温度场的数值解. 数值结果表明,随时间增加,流体和固体温度、应变及孔隙压力沿x轴方向传递,同时发现x轴方向应变远大于y轴方向应变. 此外,随时间增加,y轴方向应变和孔隙压力最大值逐渐减小. 研究建立的数学模型和数值解有助于深入认识二维饱和多孔介质热流固完全耦合力学行为.

  • 图  1  二维多孔介质平板示意图

    Figure  1.  Schematic diagram of a two-dimensional porous medium flat plate

    图  2  温度随r/a轴的变化

    Figure  2.  Temperature versus r/a

    图  3  温度分布图

    Figure  3.  Two-dimensional distribution of temperature

    图  4  温度随x轴变化

    Figure  4.  Temperature versus x

    图  5  孔隙压力分布

    Figure  5.  Two-dimensional distribution of pore pressure

    图  6  孔隙压力随x轴变化

    Figure  6.  Pore pressure versus x

    图  7  应变分布

    Figure  7.  Two-dimensional distribution of strain

    图  8  应变随x轴变化

    Figure  8.  Strain versus x

    表  1  不同网格数下孔隙压力的相对误差

    Table  1.   Relative error of pore pressure under different grid numbers

    网格数量
    坐标
    $ 180\times 80 $$ 190 \times 90 $$ 200 \times 100 $
    (0.1,0.075)$ 7.963\;73 \times {10^{ - 8}} $$ 7.963\;66\times {10}^{-8} $$ 7.963\;11 \times {10^{ - 8}} $
    y向应变相对误差/%$- 0.000\;88$$- 0.006\;91$
    (0.2,0.075)$ {\text{1}}{{.453\;65}} \times {\text{1}}{{\text{0}}^{ - 8}} $$ {\text{1}}{{.453\;72}} \times {\text{1}}{{\text{0}}^{ - 8}} $$ {\text{1}}{{.453\;39}} \times {\text{1}}{{\text{0}}^{ - 8}} $
    y向应变相对误差/%$0.00482$$- 0.022\;71$
    (0.3,0.075)$ {\text{2}}{{.418\;16}} \times {\text{1}}{{\text{0}}^{ - 9}} $$ {\text{2}}{{.418\;43}} \times {\text{1}}{{\text{0}}^{ - 9}} $$ \text{2}{.417\;34}\times {\text{10}}^{-9} $
    y向应变相对误差/%$0.01116$$- 0.04509$
    下载: 导出CSV

    表  2  流体和固体物性参数

    Table  2.   Fluid and solid physical parameters

    参数/单位取值
    Lame常数$ G $/$ {\text{GPa}} $$ 6.8 $
    Lame常数$ \lambda $/$ \text{GPa} $$ 3.8 $
    Biot系数$ {\alpha }_{\text{B}} $$ 0.74 $
    流度c/(m2·s−1)$ 1.4\times {10}^{-3} $
    排空体积模量$ K/{\text{GPa}} $$ 8.4 $
    参考温度$ {T_{\text{0}}/{\textit{℃ }}} $$ 30 $
    固体密度$ {\rho _{\text{s}}} $/$ ({\text{kg}}\cdot{{\text{m}}^{{-3}}}) $$ 2\;600 $
    流体密度$ {\rho _{\text{f}}} $/$ ({\rm{kg\cdot m}}^{{-3}} )$$ 1\;000 $
    孔隙度$ \phi $$ 0.4 $
    固体体积热膨胀系数$ {\beta _{\text{T}}} $/K−1$ 3.3 \times {10^{ - 5}} $
    固体温度对孔隙压力的贡献系数$ {a_{ {P }{ {T }_{\text{S} } } } } $/Pa−1$ - 7.17 \times {10^{ - 5}} $
    流体温度对孔隙压力的贡献系数${a_{ {P }{ {T }_{\text{f} } } }}$/Pa−1$ - 4.78 \times {10^{ - 5}} $
    固体热导率$ {k_{\text{s}}} $/(W·(m·K)−1)$ 2.4 $
    流体热导率$ {k_{\text{f}}} $/(W·(m·K)−1)$ 0.6 $
    恒容热容$ C_{\text{s}}^{\left( {\text{v}} \right)} $/(J·(kg·K)−1)$ 920 $
    恒压热容$ {C}_{\text{f}}^{\left(\text{p}\right)} $/(J·(kg·K)−1)$ 4\;200 $
    固液界面传热系数$ h $/(W·(m3·K)−1)$ 50 $
    孔隙压力随时间变化量的贡献系数${a}_{PP }$/Pa−1$ 1.4\times {10}^{-3} $
    下载: 导出CSV
  • [1] JIANG P X, REN Z P. Numerical investigation of forced convection heat transfer in porous media using a thermal non-equilibrium model[J] . International Journal of Heat and Fluid Flow,2001,22:102 − 110. doi: 10.1016/S0142-727X(00)00066-7
    [2] VAFAI K, KIM S J. Forced convection in a channel filled with a porous medium: An exact solution[J] . Journal of Heat Transfer,1989,111:1103 − 1106. doi: 10.1115/1.3250779
    [3] NIELD D A, BEJAN A. Convection in porous media [M]. fifth edition. Berlin: Springer, 2017.
    [4] 马德正, 李培超, 张恒运. 锂离子电池隔膜在压缩过程中的流固耦合效应[J] . 储能科学与技术,2021,10(2):483 − 490.
    [5] NAIR R, ABOUSLEIMAN Y, ZAMAN M. A finite element thermoporoelastic model for dualporosity media[J] . International Journal for Numerical and Analytical Methods in Geomechanics,2004,28:875 − 898. doi: 10.1002/nag.336
    [6] WU B S, ZHANG X, JEFFREY R G, et al. A semi-analytic solution of a wellbore in a nonisothermal low-permeability porous medium under non-hydrostatic stresses[J] . International Journal of Solids and Structures,2012,49(13):1472 − 1484. doi: 10.1016/j.ijsolstr.2012.02.035
    [7] ABOUSLEIMAN Y, EKBOTE S. Solutions for the inclined borehole in a thermoporoelastic transversely isotropic medium[J] . Journal of Applied Mechanics,2005,72(1):102 − 114. doi: 10.1115/1.1825433
    [8] 路朗, 辛成运, 刘忠鑫. 多孔介质局部非热平衡模型研究综述[J] . 热能动力工程,2019,34(7):1 − 8.
    [9] 陈帅, 李波波, 张尧, 等. 页岩气储层微观渗流机理研究[J] . 中国科学: 技术科学,2021,51(5):580 − 590.
    [10] LI P C, ZHANG J L, WANG K Y, et al. Heat transfer characteristics of thermally developing forced convection in a porous circular tube with asymmetric entrance temperature under LTNE condition[J] . Applied Thermal Engineering,2019,154:326 − 331. doi: 10.1016/j.applthermaleng.2019.03.109
    [11] 周峰, 刘琪英, 王晨光, 等. 基于COMSOL的果糖脱水传热传质数值模拟[J] . 太阳能学报,2019,40(6):1677 − 1683.
    [12] LI P C, ZHANG J L, WANG K Y, et al. Analysis of thermally developing forced convection heat transfer in a porous medium under local thermal non-equilibrium condition: A circular tube with asymmetric entrance temperature[J] . International Journal of Heat and Mass Transfer,2018,127:880 − 889. doi: 10.1016/j.ijheatmasstransfer.2018.08.081
    [13] YUE F L, LI P C, Zhao C Y. Numerical investigation of thermally developing non-Darcy forced convection in a porous circular duct with asymmetric entrance temperature under LTNE condition[J] . Transport in Porous Media,2021,136(2):639 − 655. doi: 10.1007/s11242-020-01533-7
    [14] WANG K Y, TAVAKKOLI F, VAFAI K. Analysis of gaseous slip flow in a porous micro-annulus under local thermal non-equilibrium condition: An exact solution[J] . International Journal of Heat and Mass Transfer,2015,89:1331 − 1341. doi: 10.1016/j.ijheatmasstransfer.2015.06.001
    [15] KUZNETSOV A V, NIELD D A. Forced convection in a channel partly occupied by a bidisperse porous medium: Asymmetric case [J]. International Journal of Heat and Mass Transfer, 2010, 53(23/24): 5167−5175.
    [16] GAO J J, DENG J G, LAN K, et al. Porothermoelastic effect on wellbore stability in transversely isotropic medium subjected to local thermal non-equilibrium[J] . International Journal of Rock Mechanics and Mining Sciences,2017,96:66 − 84.
    [17] YASSER M, MEHDI M. Analytical investigation of heat transfer enhancement in a channel partially filled with a porous material under local thermal non-equilibrium condition[J] . International Journal of Thermal Sciences,2011,50(12):2386 − 2401. doi: 10.1016/j.ijthermalsci.2011.07.008
    [18] CHIKH S, BOUMEDIEN A, BOUHADEF K, et al. Analytical solution of non-Darcian forced convection in an annular duct partially filled with a porous medium[J] . International Journal of Heat and Mass Transfer,1995,38:1543 − 1551. doi: 10.1016/0017-9310(94)00295-7
    [19] XU Z G, GONG Q. Numerical investigation on forced convection of tubes partially filled with composite metal foams under local thermal non-equilibrium condition[J] . International Journal of Thermal Sciences,2018,133:1 − 12.
    [20] TONG F G, JING L R, ZIMMERMAN R W. A fully coupled thermo-hydro-mechanical model for simulating multiphase flow, deformation and heat transfer in buffer material and rock masses[J] . International Journal of Rock Mechanics & Mining Sciences,2010,47(2):205 − 217.
    [21] LEWIS R W, ROBERTS P J, SCHREFLFLER B A. Finite element modeling of two phase heat and fluid flow in deforming porous media[J] . Transport in Porous Media,1989,4:319 − 334. doi: 10.1007/BF00165778
    [22] GELET R, LORET B, KHALILI N. Borehole stability analysis in a thermoporoelastic dual porosity medium[J] . International Journal of Rock Mechanics and Mining Sciences,2012,50:65 − 76. doi: 10.1016/j.ijrmms.2011.12.003
    [23] GHASSEMI A, NYGREN A, CHENG A. Effects of heat extraction on fracture aperture: a poro- thermoelastic analysis[J] . Geothermics,2008,37:525 − 539. doi: 10.1016/j.geothermics.2008.06.001
    [24] BOER R D. 多孔介质理论发展史上的重要成果 [M]. 刘占芳, 严波, 译. 重庆: 重庆大学出版社, 1995.
    [25] 孔祥言, 李道伦, 徐献芝, 等. 热−流−固耦合渗流的数学模型研究[J] . 水动力学研究与进展,2005,20(2):269 − 275.
    [26] ZHANG Z, CHENG X. A fully coupled THM model based on a non-equilibrium thermodynamic approach and its application[J] . International Journal for Numerical and Analytical Methods in Geomechanics,2017,41(4):527 − 554. doi: 10.1002/nag.2569
    [27] YANG Y, KLAUS G, TOM S. Thermo-osmosis effect in saturated porous medium[J] . Transport in Porous Media,2014,104(2):253 − 271. doi: 10.1007/s11242-014-0332-5
    [28] LI W D, CHEN M, JIN Y, et al. Effect of local thermal non-equilibrium on thermoporoelastic response of a borehole in dual-porosity media[J] . Applied Thermal Engineering,2018,142:166 − 183. doi: 10.1016/j.applthermaleng.2018.06.055
    [29] HE L W, JIN Z H. A local thermal nonequilibrium poroelastic theory for fluid saturated porous media[J] . Journal of Thermal Stresses,2010,33:799 − 813. doi: 10.1080/01495739.2010.482358
  • 加载中
图(8) / 表(2)
计量
  • 文章访问数:  228
  • HTML全文浏览量:  180
  • PDF下载量:  44
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-06
  • 录用日期:  2022-01-04
  • 刊出日期:  2022-09-26

目录

    /

    返回文章
    返回