留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于单眼视觉和超声波室内障碍物检测系统在智能车上的应用

唐明 李媛媛

唐明, 李媛媛. 基于单眼视觉和超声波室内障碍物检测系统在智能车上的应用[J]. 上海工程技术大学学报, 2022, 36(1): 69-76. doi: 10.12299/jsues.21-0136
引用本文: 唐明, 李媛媛. 基于单眼视觉和超声波室内障碍物检测系统在智能车上的应用[J]. 上海工程技术大学学报, 2022, 36(1): 69-76. doi: 10.12299/jsues.21-0136
TANG Ming, LI Yuanyuan. Indoor obstacle detection system based on monocular vision and ultrasound applied to an intelligent car[J]. Journal of Shanghai University of Engineering Science, 2022, 36(1): 69-76. doi: 10.12299/jsues.21-0136
Citation: TANG Ming, LI Yuanyuan. Indoor obstacle detection system based on monocular vision and ultrasound applied to an intelligent car[J]. Journal of Shanghai University of Engineering Science, 2022, 36(1): 69-76. doi: 10.12299/jsues.21-0136

基于单眼视觉和超声波室内障碍物检测系统在智能车上的应用

doi: 10.12299/jsues.21-0136
详细信息
    作者简介:

    唐明:唐 明(1995−),男,在读硕士,研究方向为图像识别和缺陷检测. E-mail:15235457065@163.com

    通讯作者:

    李媛媛(1979−),女,教授,博士,研究方向为智能传感器和故障诊断. E-mail:liyuanyuanedu@163.com

  • 中图分类号: TG312

Indoor obstacle detection system based on monocular vision and ultrasound applied to an intelligent car

  • 摘要:

    提出一种基于单眼视觉和超声波测距的树莓派智能机器人车检测静态和动态障碍物的方法. 采用改进的单眼视觉障碍物检测算法,对室内的静态和动态障碍物进行轮廓检测,并利用超声波传感器测量机器人车与障碍物之间的距离. 针对静态障碍物检测,在图像预处理阶段引入图像增强,并通过HSV图像提取不同障碍物颜色特征,以提高障碍物轮廓标定的效率和准确率. 针对动态障碍物检测,结合背景差分与3D图像显示技术实现动态目标捕捉,并设置距离决策模块记录障碍物位置信息. 试验结果表明,该方法可有效减少障碍物检测的平均消耗时间以及障碍物位置信息的错误率,提高室内障碍物检测的效率和准确性.

  • 图  1  检测系统整体框架

    Figure  1.  Overall framework of detection system

    图  2  Raspberry Pi试验平台

    Figure  2.  Raspberry Pi experimental platform

    图  3  室内静态障碍物检测系统

    Figure  3.  Indoor static obstacle detection system

    图  4  背景差分法示意图

    Figure  4.  Schematic diagram of background difference method

    图  5  直方图均衡化增强

    Figure  5.  Histogram equalization enhancement

    图  6  静态障碍物检测结果

    Figure  6.  Static obstacle detection result

    图  7  擦除背景后的3D图像

    Figure  7.  3D image after erasing the background

    图  8  动态障碍物检测

    Figure  8.  Dynamic obstacle detection

    图  9  3种静态障碍物轮廓检测的比较

    Figure  9.  Comparison of three kinds of static obstacle contour detection

    图  10  增强图像与未增强图像之间检测正确率比较

    Figure  10.  Comparison of detection accuracy between enhanced image and unenhanced image

    图  11  动态障碍物误差分析

    Figure  11.  Error analysis of dynamic obstacles

    图  12  添加和不添加障碍物时位置记录响应模块之间的处理时间比较

    Figure  12.  Comparison of processing time between adding and not adding obstacle location record response modules

    表  1  静态障碍物到智能车的距离

    Table  1.   Distances from static obstacles to smart car cm

    障碍物水瓶雨伞
    距离182.36153.66112.52
    下载: 导出CSV

    表  2  动态障碍物与智能车之间的距离

    Table  2.   Distance between dynamic obstacle and smart car cm

    障碍物行人移动的水瓶移动的纸箱
    距离90.8682.9985.02
    下载: 导出CSV
  • [1] OHYA I, KOSAKA A, KAK A. Vision-based navigation by a mobile robot with obstacle avoidance using single-camera vision and ultrasonic sensing[J] . IEEE Transactions on Robotics and Automation,1998,14(6):969 − 978. doi: 10.1109/70.736780
    [2] XU Z, MIN B, CHEUNG R. A robust background initialization algorithm with superpixel motion detection[J] . Signal Processing: Image Communication,2019,71:1 − 12. doi: 10.1016/j.image.2018.07.004
    [3] QIU K J, LIU T B, SHEN S J. Model-based global localization for aerial robots using edge aligmennt[J] . IEEE Robotics and Automation Letters,2017,2(3):1256 − 1263. doi: 10.1109/LRA.2017.2660063
    [4] CAI S Z, HUANG Y B, YE B, et al. Dynamic illumination optical flow computing for sensing multiple mobile robots from a drone[J] . IEEE Transactions on Systems, Man, and Cybernetics: Systems,2018,48(8):1370 − 1382.
    [5] CAI G R, SU S Z, HE W L, et al. Combining 2D and 3D features to improve road detection based on stereo cameras[J] . IET Computer Vision,2018,12(6):834 − 843. doi: 10.1049/iet-cvi.2017.0266
    [6] STOLOJESCU-CRISAN C, HOLBAN S. A Comparison of X-ray image segmentation techniques[J] . Advances in Electrical & Computer Engineering,2013,13(3):85 − 92.
    [7] ZHAO J P, ZHANG Z H, YU W X, et al. A cascade coupled convolutional neural network guided visual attention method for ship detection from SAR images[J] . IEEE Access,2018,6:50693 − 50708. doi: 10.1109/ACCESS.2018.2812929
    [8] GARCIA F, SCHOCKAERT C, MIRBACH B. Real-time visualization of low contrast targets from high-dynamic range infrared images based on temporal digital detail enhancement filter[J] . Journal of Electronic Imaging,2015,24(6):061103. doi: 10.1117/1.JEI.24.6.061103
    [9] CHEN Z, WANG S W, YIN F L. A time delay estimation method based on wavelet transform and speech envelope for distributed microphone arrays[J] . Advances in Electrical and Computer Engineering,2013,13(3):39 − 44. doi: 10.4316/AECE.2013.03007
    [10] FAN L, XIA G Q, TANG X, et al. Tunable ultra-broadband microwave frequency combs generation based on a current modulated semiconductor laser under optical injection[J] . IEEE Access,2017,5:17764 − 17771. doi: 10.1109/ACCESS.2017.2737665
    [11] XU H Y, YU M, LUO T, et al. Parts-based stereoscopic image assessment by learning binocular manifold color visual properties[J] . Journal of Electronic Imaging,2016,25(6):1 − 10.
    [12] ZHU X W, LEI X S, SUI Z H, et al. Research on detection method of UAV obstruction based on binocular vision[C]// Proceedings of the 2nd International Conference on Advances in Materials, Machinery, Electronics. Xi'an: AMME, 2018: 040010.
    [13] ZHANG E S, WANG S B. Plane-space algorithm based on binocular stereo vision with its estimation of range and measurement boundary[J] . IEEE Access,2018,6:62450 − 62457. doi: 10.1109/ACCESS.2018.2875760
    [14] FLACCO F, DE LUCA A. Real-time computation of distance to dynamic obstacles with multiple depth sensors[J] . IEEE Robotics & Automation Letters,2017,2(1):56 − 63.
    [15] ZHANG T Y, HU H M, LI B. A naturalness preserved fast dehazing algorithm using HSV color space[J] . IEEE Access,2018,6:10644 − 10649.
    [16] YOON I, KIM S, KIM D, et al. Adaptive defogging with color correction in the HSV color space for consumer surveillance system[J] . IEEE Transactions on Consumer Electronics,2012,58(1):111 − 116. doi: 10.1109/TCE.2012.6170062
    [17] WO Y, CHEN X, HAN G Q. A saliency detection model using aggregation degree of color and texture[J] . Signal Processing: Image Communication,2015,30:121 − 136. doi: 10.1016/j.image.2014.10.004
    [18] DAS P, KIM B Y, PARK Y, et al. A new color space based constellation diagram and modulation scheme for color independent VLC[J] . Advances in Electrical & Computer Engineering,2012,12(4):11 − 18.
    [19] TSAI V J. A comparative study on shadow compensation of color aerial images in invariant color models[J] . IEEE Transactions on Geoscience & Remote Sensing,2006,44(6):1661 − 1671.
    [20] RIAD R, HARBA R, DOUZI H, et al. Robust fourier watermarking for id images on smart card plastic supports[J] . Advances in Electrical & Computer Engineering,2016,16(4):21 − 28.
    [21] BAO P, ZHANG L, WU X L. Canny edge detection enhancement by scale multiplication[J] . IEEE Transactions on Pattern Analysis and Machine Intelligence,2005,27(9):1485 − 1490. doi: 10.1109/TPAMI.2005.173
    [22] ZHANG X G, HUANG T J, TIAN Y H, et al. Background-modeling-based adaptive prediction for surveillance video coding[J] . IEEE Transactions on Image Processing,2014,23(2):769 − 784. doi: 10.1109/TIP.2013.2294549
  • 加载中
图(12) / 表(2)
计量
  • 文章访问数:  308
  • HTML全文浏览量:  129
  • PDF下载量:  44
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-08
  • 刊出日期:  2022-09-26

目录

    /

    返回文章
    返回