留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

微观尺度下生物再生剂−沥青的融合扩散特性

汤文 李悦 郭颖君 吕悦晶

汤文, 李悦, 郭颖君, 吕悦晶. 微观尺度下生物再生剂−沥青的融合扩散特性[J]. 上海工程技术大学学报, 2022, 36(1): 46-54. doi: 10.12299/jsues.21-0190
引用本文: 汤文, 李悦, 郭颖君, 吕悦晶. 微观尺度下生物再生剂−沥青的融合扩散特性[J]. 上海工程技术大学学报, 2022, 36(1): 46-54. doi: 10.12299/jsues.21-0190
TANG Wen, LI Yue, GUO Yingjun, LYU Yuejing. Study on fusion diffusion characteristics of bio-based rejuvenator-asphalt at micro scale[J]. Journal of Shanghai University of Engineering Science, 2022, 36(1): 46-54. doi: 10.12299/jsues.21-0190
Citation: TANG Wen, LI Yue, GUO Yingjun, LYU Yuejing. Study on fusion diffusion characteristics of bio-based rejuvenator-asphalt at micro scale[J]. Journal of Shanghai University of Engineering Science, 2022, 36(1): 46-54. doi: 10.12299/jsues.21-0190

微观尺度下生物再生剂−沥青的融合扩散特性

doi: 10.12299/jsues.21-0190
基金项目: 国家自然科学基金资助(51508428); 青海省重点研发与转化计划项目科技援青合作专项资助(2021-QY-207)
详细信息
    作者简介:

    汤文:汤 文(1982−),男,副教授,博士,研究方向为道路工程材料. E-mail: tangwen@wust.edu.cn

  • 中图分类号: U416.217

Study on fusion diffusion characteristics of bio-based rejuvenator-asphalt at micro scale

  • 摘要:

    运用分子动力学方法构建生物再生剂−沥青模型,通过微观模拟探究再生剂−沥青的融合扩散行为. 首先采用FTIR试验结合SARA模型确定老化前后的12种沥青分子结构,选用动物废弃物生物再生剂的主要成分类固醇和羧酸,建立沥青−再生剂的扩散体系分子动力学模型. 采用密度、相容性指标验证分子动力学模型的可靠性,分析不同温度、老化状态下生物再生剂在基质沥青与老化沥青中的融合扩散行为. 结果表明:生物再生剂在老化沥青中的扩散系数高于在基质沥青中的扩散系数;在相同温度下类固醇的扩散性能优于羧酸;两种生物再生剂的扩散系数随着温度升高而升高,高温条件下体系动能更大,使体系分子更容易摆脱分子力的约束.

  • 图  1  沥青老化前后红外光谱图

    Figure  1.  Infrared spectrum of asphalt before and after aging

    图  2  沥青吸氧老化反应

    Figure  2.  Oxygen absorption in asphalt aging

    图  3  老化沥青12分子结构

    Figure  3.  12 molecular structures of aged asphalt

    图  4  羧酸和类固醇分子结构

    Figure  4.  Molecular structures of carboxylic acid and steroid

    图  5  生物再生剂–沥青扩散模型

    Figure  5.  Bio-based rejuvenator- asphalt diffusion model

    图  6  老化沥青–R1体系

    Figure  6.  Aging asphalt - R1 System

    图  7  NPT系综中晶胞密度随时间变化

    Figure  7.  Change of cell density in NPT ensemble with time

    图  8  不同体系的均方位移曲线

    Figure  8.  MSD curves of different systems

    图  9  不同温度下各体系均方位移曲线

    Figure  9.  MSD curves of each system at different temperatures

    表  1  沥青老化前后性能指标

    Table  1.   Performance indexes of asphalt before and after aging

    样品针入度/ 0.1 mm
    软化点/ °C
    延度/ cm
    基质沥青6646.0122.0
    老化沥青2565.034.5
    下载: 导出CSV

    表  2  沥青模型的分子组成

    Table  2.   Molecular compositions of asphalt model

    组分分子老化前老化后
    分子式分子数量质量分数/%分子式分子数量质量分数/%
    饱和分SqualaneC30H62715.9C30H62614.9
    HopaneC35H627C35H627
    芳香分PHPNC35H441842.3C35H36O41333.3
    DOCHNC30H4621C30H42O215
    胶质QuinolinohopaneC40H59N225.9C40H55NO2230.2
    ThioisorenierataneC40H60S2C40H56O3S2
    BenzobisbenzothiopheneC18H10S23C18H10O2S24
    PyridinohopaneC36H57N2C36H53NO22
    Trimethylbenzene-oxaneC29H50O15C29H48O217
    沥青质Asphaltene-phenolC42H54O315.9C42H46O5421.6
    Asphaltene-pyrroleC66H81N2C66H67NO73
    Asphaltene-thiopheneC51H62S4C51H54O5S4
    下载: 导出CSV

    表  3  沥青的内聚能密度和溶解度参数

    Table  3.   Cohesive energy density and solubility parameter of asphalt

    范德华力/
    (J•cm−30.5
    库仑静电力/
    (J•cm−30.5
    CED/
    (108J•cm−3
    模拟值/
    (J•m−30.5
    试验值/
    (J•cm−30.5
    18.401.223.4018.4413.30~22.50
    下载: 导出CSV

    表  4  生物再生剂在不同温度下的扩散系数

    Table  4.   Diffusion coefficient of bio-based rejuvenator at different temperatures (10−10m2• s−1

    扩散体系温度/K
    253298358418
    老化沥青-R10.700.781.173.00
    老化沥青-R21.071.101.674.00
    基质沥青-R10.530.751.501.67
    基质沥青-R20.650.931.832.33
    下载: 导出CSV
  • [1] 张文,龙军,任强, 等. 沥青质分子聚集行为研究进展[J] . 化工进展,2019,38(5):2158 − 2163.
    [2] ZAUMANIS M, MALLICK R B, POULIKAKOS L, et al. Influence of six rejuvenators on the performance properties of Reclaimed Asphalt Pavement (RAP) binder and 100% recycled asphalt mixtures[J] . Construction and Building Materials,2014,71:538 − 550. doi: 10.1016/j.conbuildmat.2014.08.073
    [3] 徐刚, 杨军, 朱浩然, 等. 生物再生剂再生效率研究[J] . 石油沥青,2017,31(1):14 − 20. doi: 10.3969/j.issn.1006-7450.2017.01.003
    [4] 高新文, 刘朝晖. 生物油再生沥青自愈合机理分析[J] . 中国公路学报,2019,32(4):235 − 242.
    [5] 季节, 李鹏飞, 杨松, 等. 生物型沥青再生剂对老化沥青再生性能的影响[J] . 石油沥青,2015,29(4):1 − 6. doi: 10.3969/j.issn.1006-7450.2015.04.001
    [6] BOWERS B F, HUANG B S, SHU X, et al. Investigation of reclaimed asphalt pavement blending efficiency through GPC and FTIR[J] . Construction and building materials,2014,50:517 − 523. doi: 10.1016/j.conbuildmat.2013.10.003
    [7] MOHAJERI M, MOLENAAR A A A, VAN DE VEN M F C. Experimental study into the fundamental understanding of blending between reclaimed asphalt binder and virgin bitumen using nanoindentation and nano-computed tomography[J] . Road Materials and Pavement Design,2014,15(2):372 − 384. doi: 10.1080/14680629.2014.883322
    [8] MA T, HUANG X M, ZHAO Y L, et al. Evaluation of the diffusion and distribution of the rejuvenator for hot asphalt recycling[J] . Construction and Building Materials,2015,98:530 − 536. doi: 10.1016/j.conbuildmat.2015.08.135
    [9] CONG P L, HAO H J, ZHANG Y H, et al. Investigation of diffusion of rejuvenator in aged asphalt[J] . International Journal of Pavement Research and Technology,2016,9(4):280 − 288. doi: 10.1016/j.ijprt.2016.08.001
    [10] XU G J, WANG H, SUN W. Molecular dynamics study of rejuvenator effect on RAP binder: Diffusion behavior and molecular structure[J] . Construction and Building Materials,2018,158:1046 − 1054. doi: 10.1016/j.conbuildmat.2017.09.192
    [11] ZADSHIR M, HOSSEINNEZHAD S, FINI E H. Deagglomeration of oxidized asphaltenes as a measure of true rejuvenation for severely aged asphalt binder[J] . Construction and Building Materials,2019,209:416 − 424. doi: 10.1016/j.conbuildmat.2019.03.090
    [12] MENG F, MA S, MUHAMMAD Y, et al. Analysis of virgin asphalt brands via the integrated application of FTIR and gel permeation chromatography[J] . Arabian Journal for Science and Engineering,2020,45(10):7999 − 8009. doi: 10.1007/s13369-020-04539-x
    [13] HOU X D, LYU S T, CHEN Z, et al. Applications of fourier transform infrared spectroscopy technologies on asphalt materials[J] . Measurement,2018,121:304 − 316. doi: 10.1016/j.measurement.2018.03.001
    [14] LI D D, GREENFIELD M L. Chemical compositions of improved model asphalt systems for molecular simulations[J] . Fuel,2014,115:347 − 356. doi: 10.1016/j.fuel.2013.07.012
    [15] FINI E H, KALBERER E W, SHAHBAZI A. Biobinder from swine manure: Sustainable alternative for asphalt binder[C]// Proceedings of Transportation Research Board 90th Annual Meeting. Washington DC: Transportation Research Board, 2011.
    [16] PAHLAVAN F, MOUSAVI M, HUNG A M, et al. Characterization of oxidized asphaltenes and the restorative effect of a bio-modifier[J] . Fuel,2018,212:593 − 604. doi: 10.1016/j.fuel.2017.10.090
    [17] HUANG M, ZHANG H L, GAO Y, et al. Study of diffusion characteristics of asphalt-aggregate interface with molecular dynamics simulation[J] . International Journal of Pavement Engineering,2019,22(3):319 − 330. doi: 10.1080/10298436.2019.1608991
    [18] WANG P, DONG Z J, TAN Y Q, et al. Investigating the interactions of the saturate, aromatic, resin, and asphaltene four fractions in asphalt binders by molecular simulations[J] . Energy & Fuels,2015,29(1):112 − 121.
  • 加载中
图(10) / 表(4)
计量
  • 文章访问数:  301
  • HTML全文浏览量:  190
  • PDF下载量:  49
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-18
  • 刊出日期:  2022-09-26

目录

    /

    返回文章
    返回