留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

0−1膨胀负二项回归模型在COVID−19疫情分析中的应用

马巧玲 肖翔

马巧玲, 肖翔. 0−1膨胀负二项回归模型在COVID−19疫情分析中的应用[J]. 上海工程技术大学学报, 2022, 36(2): 212-217. doi: 10.12299/jsues.21-0235
引用本文: 马巧玲, 肖翔. 0−1膨胀负二项回归模型在COVID−19疫情分析中的应用[J]. 上海工程技术大学学报, 2022, 36(2): 212-217. doi: 10.12299/jsues.21-0235
MA Qiaoling, XIAO Xiang. Application of zero-and-one-inflated negative binomial regression model in COVID−19 epidemic analysis[J]. Journal of Shanghai University of Engineering Science, 2022, 36(2): 212-217. doi: 10.12299/jsues.21-0235
Citation: MA Qiaoling, XIAO Xiang. Application of zero-and-one-inflated negative binomial regression model in COVID−19 epidemic analysis[J]. Journal of Shanghai University of Engineering Science, 2022, 36(2): 212-217. doi: 10.12299/jsues.21-0235

0−1膨胀负二项回归模型在COVID−19疫情分析中的应用

doi: 10.12299/jsues.21-0235
基金项目: 全国统计科学研究项目资助(2020LY080)
详细信息
    作者简介:

    马巧玲(1998−),女,在读硕士,研究方向为统计学. E-mail:qiaolingma@126.com

    通讯作者:

    肖 翔(1980−),男,讲师,硕士,研究方向为统计学. E-mail:xiaoxiang@sues.edu.cn

  • 中图分类号: O212

Application of zero-and-one-inflated negative binomial regression model in COVID−19 epidemic analysis

  • 摘要:

    在公共卫生等应用领域,经常会同时出现零观测值、一观测值较多的情况. 为更好地拟合这类数据,采用0−1膨胀负二项分布及其回归模型进行分析. 在数据扩充基础上,结合Pólya−Gamma潜变量对模型参数进行贝叶斯推断. 最后,对我国湖北省2019冠状病毒病(COVID−19)死亡数据集进行分析. 研究表明,0−1膨胀负二项回归模型能够达到更好的拟合效果.

  • 图  1  ZOINB回归模型中COVID−19死亡数据的观测频数与拟合频数

    Figure  1.  Observation frequency and fitted frequency for COVID−19 death data in ZOINB regression model

    表  1  ZOINB回归模型的参数估计

    Table  1.   Parameter estimation of ZOINB regression model

    样本容量统计量${p_1}$${\tilde \beta _0}$${\beta _1}$${\gamma _0}$${\gamma _1}$
    50均值0.28870.88861.43250.97891.9404
    中位数0.29010.88811.46130.96131.9567
    均方误差0.00350.00310.04190.04240.0504
    覆盖率0.96020.95320.94210.93320.9531
    100均值0.29270.89131.49150.99151.9731
    中位数0.29650.89481.49110.98111.9273
    均方误差0.00230.00130.02340.02130.0193
    覆盖率0.95410.94820.94920.95030.9504
    下载: 导出CSV

    表  2  ZOINB回归模型中参数估计均值的比较

    Table  2.   Comparison of parameter estimation mean in ZOINB regression model

    参数$r = 2$$r = 3$$r = 4$$r = 5$
    ${\tilde \beta _0}$0.61660.61530.61440.6138
    ${\beta _1}$−0.4722−0.4536−0.4434−0.4766
    ${\beta _2}$0.34650.34580.35010.3511
    ${\beta _3}$0.23010.23150.23340.2337
    ${\beta _4}$−1.2605−1.2825−1.3332−1.3536
    ${\gamma _0}$0.06520.07440.07580.0697
    ${\gamma _1}$0.14570.41870.50280.5584
    ${\gamma _2}$0.34870.36630.38280.4087
    AIC1536.3141537.8431526.1731548.801
    下载: 导出CSV

    表  3  ZOINB回归模型中的观测频数与拟合频数

    Table  3.   Comparison of observation frequency and fitted frequency in ZOINB regression model

    观测值观测频数拟合频数
    $r = 2$$r = 3$$r = 4$$r = 5$
    02220212224
    154553
    213211
    313220
    410002
    下载: 导出CSV
  • [1] 张良超, 周金亮, 温利民. 零膨胀泊松模型中风险参数的贝叶斯估计[J] . 江西师范大学学报(自然科学版),2020,44(3):269 − 274.
    [2] 田震. 零一膨胀回归模型及其统计诊断[D]. 昆明: 云南大学, 2016.
    [3] TANG Y C, LIU W C, XU A C. Statistical inference for zero-and-one-inflated Poisson models[J] . Statistics Theory and Related Fields,2017,1(2):216 − 226. doi: 10.1080/24754269.2017.1400419
    [4] LIU W C, TANG Y C, XU A C. A zero-and-one inflated Poisson model and its application[J] . Statistics and Its Interface,2018,11(2):339 − 351. doi: 10.4310/SII.2018.v11.n2.a11
    [5] 夏丽丽, 田茂再. 零一膨胀泊松回归模型的非参数统计分析及其应用[J] . 数理统计与管理,2019,38(2):235 − 246.
    [6] 刘娱, 安博文, 田茂再. 零一膨胀泊松模型的似然检验及模型比较[J] . 统计与决策,2021,37(577):20 − 24.
    [7] FAROUGHI P, ISMAIL N. Bivariate zero-inflated negative binomial regression model with applications[J] . Journal of Statistical Computation and Simulation,2017,87(3):457 − 477. doi: 10.1080/00949655.2016.1213843
    [8] SAFFARI S E, ALLEN J C. Bivariate negative binomial regression model with excess zeros and right censoring: an application to Indonesian data[J] . Journal of Applied Statistics,2020,47(10):1901 − 1914. doi: 10.1080/02664763.2019.1695761
    [9] KANG K I, KANG K, KIM C. Risk factors influencing cyberbullying perpetration among middle school students in Korea: Analysis using the zero-inflated negative binomial regression model[J] . International Journal of Environmental Research and Public Health,2021,18(5):2224 − 2224. doi: 10.3390/ijerph18052224
    [10] 李蒙. 0−1膨胀负二项模型及其统计分析[D]. 上海: 华东师范大学, 2018.
    [11] 肖翔. 0−1膨胀几何分布回归模型及其应用[J] . 系统科学与数学,2019,39(9):1486 − 1499. doi: 10.12341/jssms13723
    [12] XIAO X, TANG Y C, XU A C, et al. Bayesian inference for zero-and-one-inflated geometric distribution regression model using Pólya-Gamma latent variables[J] . Communication in Statistics-Theory and Method,2020,49(15):3730 − 3743. doi: 10.1080/03610926.2019.1709647
    [13] NICHOLAS G P, JAMES G S, JESSE W. Bayesian inference for logistic models using Pólya−Gamma latent variables[J] . Journal of the American Statistical Association,2013,108(504):1339 − 1349. doi: 10.1080/01621459.2013.829001
  • 加载中
图(1) / 表(3)
计量
  • 文章访问数:  423
  • HTML全文浏览量:  302
  • PDF下载量:  152
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-29
  • 网络出版日期:  2022-11-16
  • 刊出日期:  2022-06-30

目录

    /

    返回文章
    返回