留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于CNN与注意力BiLSTM的轴承剩余使用寿命预测方法

郭玉荣 茅健 赵嫚

郭玉荣, 茅健, 赵嫚. 基于CNN与注意力BiLSTM的轴承剩余使用寿命预测方法[J]. 上海工程技术大学学报, 2023, 37(1): 96-104. doi: 10.12299/jsues.21-0244
引用本文: 郭玉荣, 茅健, 赵嫚. 基于CNN与注意力BiLSTM的轴承剩余使用寿命预测方法[J]. 上海工程技术大学学报, 2023, 37(1): 96-104. doi: 10.12299/jsues.21-0244
GUO Yurong, MAO Jian, ZHAO Man. Prediction method of bearing remaining useful life based on CNN and attention BiLSTM[J]. Journal of Shanghai University of Engineering Science, 2023, 37(1): 96-104. doi: 10.12299/jsues.21-0244
Citation: GUO Yurong, MAO Jian, ZHAO Man. Prediction method of bearing remaining useful life based on CNN and attention BiLSTM[J]. Journal of Shanghai University of Engineering Science, 2023, 37(1): 96-104. doi: 10.12299/jsues.21-0244

基于CNN与注意力BiLSTM的轴承剩余使用寿命预测方法

doi: 10.12299/jsues.21-0244
基金项目: 上海市浦江人才计划项目资助(20PJ1404700)
详细信息
    作者简介:

    郭玉荣(1997−),男,在读硕士,研究方向为智能制造、故障诊断与预测. E-mail:guoyurong0181@163.com

    通讯作者:

    茅 健(1972−),男,教授,博士,研究方向为航空装备检测与控制、碳纤维复材增材制造、智能机器人等.E-mail:jmao@sues.edu.cn

  • 中图分类号: TH133.33;TP183

Prediction method of bearing remaining useful life based on CNN and attention BiLSTM

  • 摘要: 滚动轴承的剩余使用寿命(Remaining Useful Life,RUL)预测对于旋转机械的运行和维护具有重要意义. 以卷积神经网络(Convolutional Neural Network,CNN)为代表的深度学习方法虽然可以从轴承振动信号中自动提取特征,却不能对特征进行自适应的选择以提高模型对重要特征的关注程度. 针对上述问题,提出一种基于CNN和注意力双向长短期记忆网络(Bidirectional Long Short-Term Memory,BiLSTM)的轴承RUL预测方法. 首先通过CNN对振动信号进行空间特征提取;然后利用BiLSTM提取时序特征;接着利用注意力机制增强模型对重要特征的关注程度,并以全连接层作为解码器预测健康指标(Health Indicator,HI);最后利用加权平均法对HI预测值进行修正,并利用多项式拟合曲线进行RUL预测. 结果表明, 所提方法的绝对百分比误差比卷积长短期记忆网络(CNN-LSTM)低14.36%,比传统的自组织映射网络(SOM)低21.28%,可用于多故障模式下的RUL预测.
  • 图  1  LSTM神经元结构

    Figure  1.  LSTM neuron structure

    图  2  BiLSTM网络结构

    Figure  2.  BiLSTM network structure

    图  3  模型结构图

    Figure  3.  Model structure diagram

    图  4  PRONOSTIA平台

    Figure  4.  PRONOSTIA platform

    图  5  轴承Bearing1_1第1个0.1 s内的时域信号

    Figure  5.  Bearing1_1 time domain signal within the first 0.1 s

    图  6  轴承Bearing1_1第1个0.1 s内的频域信号

    Figure  6.  Bearing1_1 frequency domain signal within the first 0.1 s

    图  7  3种故障模式的时域波形图和均方根值图

    Figure  7.  Time domain waveform and RMS value diagrams of three failure modes

    图  8  轴承Bearing1_3健康指标

    Figure  8.  Bearing1_3 health indicators

    图  9  3种轴承RUL预测结果

    Figure  9.  RUL prediction results of three kinds of bearings

    表  1  数据集情况

    Table  1.   Data sets situation

    工况转速/(r·min-1负载/N训练数据集测试数据集
    工况118004000Bearing1_1、Bearing1_2Bearing1_3、Bearing1_4、Bearing1_5、Bearing1_6、、Bearing1_7
    工况216504200Bearing2_1、Bearing2_2Bearing2_3、Bearing2_4、Bearing2_5、Bearing2_6、、Bearing2_7
    工况315005000Bearing3_1、Bearing3_2Bearing3_3
    下载: 导出CSV

    表  2  模型结构参数

    Table  2.   Model structure parameters

    序号层类型关键参数输出
    0输入层1280×1
    1卷积层核大小:16×1,通道数:10,步长:4320×10
    2池化层核大小:2×1,步长:2160×10
    3卷积层核大小:4×1,通道数:20,步长:280×20
    4池化层核大小:2×1,步长:240×20
    5BiLSTM层LSTM单元数:128,
    激活函数:tanh,dropout:0.3
    256×20
    6BiLSTM层LSTM单元数:128,
    激活函数:tanh,dropout:0.3
    256×20
    7Attention层256×1
    8全连接层1
    下载: 导出CSV

    表  3  RUL预测结果

    Table  3.   RUL prediction results

    轴承当前时刻/
    (10 s)
    RUL真实值/
    (10 s)
    RUL预测值/
    (10 s)
    百分比
    误差/%
    文献[17]
    结果/%
    文献[12]
    结果/%
    Bearing1_3180157342925.1354.73−31.76
    Bearing1_41138290389−34.1438.6962.76
    Bearing1_52301161244−51.55−99.40−136.03
    Bearing1_62301146194−32.88−120.07−32.88
    Bearing1_715017576859.5170.65−11.09
    Bearing2_3120175334953.6575.5344.22
    Bearing2_4611139202−45.3219.81−55.40
    Bearing2_52001309403−30.428.2068.61
    Bearing2_657112911113.9517.87−51.49
    Bearing2_7171585112.071.69−68.97
    Bearing3_33518291−10.982.93−21.96
    $|\overline {{\rm{Er}}} |$31.9646.3253.24
    下载: 导出CSV
  • [1] 张小丽, 王保建, 马猛, 等. 滚动轴承寿命预测综述[J] . 机械设计与制造,2015(10):221 − 224. doi: 10.3969/j.issn.1001-3997.2015.08.059
    [2] 范强飞, 廖爱华, 丁亚琦. 基于RVM和WPHM的滚动轴承剩余寿命预测[J] . 上海工程技术大学学报,2019,33(4):334 − 338. doi: 10.3969/j.issn.1009-444X.2019.04.007
    [3] WANG Y, PENG Y Z, ZI Y Y, et al. A two-stage data-driven-based prognostic approach for bearing degradation problem[J] . IEEE Transactions on Industrial Informatics,2016,12(3):924 − 932. doi: 10.1109/TII.2016.2535368
    [4] ZHANG Z, WANG Y, WANG K. Fault diagnosis and prognosis using wavelet packet decomposition, fourier transform and artificial neural network[J] . Journal of Intelligent Manufacturing,2013,24(6):1213 − 1227. doi: 10.1007/s10845-012-0657-2
    [5] CAO L X, QIAN Z, PEI Y . Remaining useful life prediction of wind turbine generator bearing based on EMD with an indicator[C]//Proceedings of 2018 Prognostics and System Health Management Conference. Chongqing: IEEE, 2018: 375 − 379.
    [6] HUANG H Z, WANG H K, LI Y F, et al. Support vector machine based estimation of remaining useful life: Current research status and future trends[J] . Journal of Mechanical Science and Technology,2015,29(1):151 − 163. doi: 10.1007/s12206-014-1222-z
    [7] BASTAMI A R, AASI A, ARGHAND H A. Estimation of remaining useful life of rolling element bearings using wavelet packet decomposition and artificial neural network[J] . Iranian Journal of Science and Technology, Transactions of Electrical Engineering,2019,43(S1):233 − 245.
    [8] WU T, GAO C X, FU Z Y. Prediction of remaining life of rolling bearing based on optimized EEMD[C]//Proceedings of 2018 Chinese Intelligent Systems Conference. Singapore: Springer, 2018: 223 − 230.
    [9] 张焱, 汤宝平, 韩延, 等. 融合失效样本与截尾样本的滚动轴承寿命预测[J] . 振动与冲击,2017,36(23):17 − 23.
    [10] CHAUHAN S, YADAV P, TIWARI P, et al. Performance prediction of rolling element bearing with utilization of support vector regression[C]// Proceedings of Reliability, Safety and Hazard Assessment for Risk-Based Technologies. Singapore: Springer, 2020: 535 − 543.
    [11] WU Q H, FENG Y, HUANG B Q. RUL Prediction of bearings based on mixture of gaussians bayesian belief network and support vector data description[C]//Proceedings of AsiaSim 2016, SCS AutumnSim 2016: Theory, Methodology, Tools and Applications for Modeling and Simulation of Complex Systems. Singapore: Springer, 2016: 118 − 130.
    [12] HONG S, ZHOU Z, ZIO E, et al. Condition assessment for the performance degradation of bearing based on a combinatorial feature extraction method[J] . Digital Signal Processing,2014,27:159 − 166. doi: 10.1016/j.dsp.2013.12.010
    [13] REN L, SUN Y Q, WANG H, et al. Prediction of bearing remaining useful life with deep convolution neural network[J] . IEEE Access,2018,6:13041 − 13049. doi: 10.1109/ACCESS.2018.2804930
    [14] WANG F, LIU X, DENG G, et al. Remaining life prediction method for rolling bearing based on the long short-term memory network[J] . Neural Processing Letters,2019,50(3):2437 − 2454. doi: 10.1007/s11063-019-10016-w
    [15] 孙鑫, 孙维堂. 基于多尺度卷积神经网络的轴承剩余寿命预测[J] . 组合机床与自动化加工技术,2020(10):168 − 171.
    [16] 张继冬, 邹益胜, 邓佳林, 等. 基于全卷积层神经网络的轴承剩余寿命预测[J] . 中国机械工程,2019,30(18):2231 − 2235.
    [17] HINCHI A Z, TKIOUAT M. Rolling element bearing remaining useful life estimation based on a convolutional long-short-term memory network[J] . Procedia Computer Science,2018,127:123 − 132. doi: 10.1016/j.procs.2018.01.106
    [18] CHEN Y S, JIANG H L, LI C Y, et al. Deep feature extraction and classification of hyperspectral images based on convolutional neural networks[J] . IEEE Transactions on Geoscience and Remote Sensing,2016,54(10):6232 − 6251. doi: 10.1109/TGRS.2016.2584107
    [19] GREFF K, SRIVASTAVA R K, KOUTNIK J, et al. LSTM: A search space odyssey[J] . IEEE Transactions on Neural Networks and Learning Systems,2016,28(10):2222 − 2232.
    [20] ZOU F Q, ZHANG H F, SANG S T, et al. Bearing fault diagnosis based on combined multi-scale weighted entropy morphological filtering and Bi-LSTM[J] . Applied Intelligence,2021,51(10):6647 − 6664. doi: 10.1007/s10489-021-02229-1
    [21] FRANCESCHI D, JANG J. Demystifying batch normalization: analysis of normalizing layer inputs in neural networks[C]//Proceedings of International Conference on Optimization and Learning. Cham: Springer, 2020, 1173: 49 − 57.
    [22] WANG Q B, ZHAO B, MA H B, et al. A method for rapidly evaluating reliability and predicting remaining useful life using two-dimensional convolutional neural network with signal conversion[J] . Journal of Mechanical Science and Technology,2019,33(6):2561 − 2571. doi: 10.1007/s12206-019-0504-x
  • 加载中
图(9) / 表(3)
计量
  • 文章访问数:  905
  • HTML全文浏览量:  842
  • PDF下载量:  162
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-07
  • 网络出版日期:  2023-05-13
  • 刊出日期:  2023-03-31

目录

    /

    返回文章
    返回