留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高精度点云模型畸变补偿方法

杨皓 宁业衍 方宇 李皓宇 杨蕴杰

杨皓, 宁业衍, 方宇, 李皓宇, 杨蕴杰. 高精度点云模型畸变补偿方法[J]. 上海工程技术大学学报, 2022, 36(3): 278-283. doi: 10.12299/jsues.21-0249
引用本文: 杨皓, 宁业衍, 方宇, 李皓宇, 杨蕴杰. 高精度点云模型畸变补偿方法[J]. 上海工程技术大学学报, 2022, 36(3): 278-283. doi: 10.12299/jsues.21-0249
YANG Hao, NING Yeyan, FANG Yu, LI Haoyu, YANG Yunjie. Distortion compensation method for high-precision point cloud model[J]. Journal of Shanghai University of Engineering Science, 2022, 36(3): 278-283. doi: 10.12299/jsues.21-0249
Citation: YANG Hao, NING Yeyan, FANG Yu, LI Haoyu, YANG Yunjie. Distortion compensation method for high-precision point cloud model[J]. Journal of Shanghai University of Engineering Science, 2022, 36(3): 278-283. doi: 10.12299/jsues.21-0249

高精度点云模型畸变补偿方法

doi: 10.12299/jsues.21-0249
基金项目: 上海市松江区科技攻关项目资助(20SJKJGG08C)
详细信息
    作者简介:

    杨皓:杨 皓(1984−),男,讲师,博士,研究方向为视觉检测与智能装配. E-mail: yanghao2525@sues.edu.com

    通讯作者:

    方 宇(1974−),男,教授,博士,研究方向为智能装备与精密检测技术. E-mail: fangyu_hit@126.com

  • 中图分类号: TP391

Distortion compensation method for high-precision point cloud model

  • 摘要:

    点云模型的准确获取与畸变补偿是三维激光扫描技术检测零部件的关键. 提出一种通过畸变补偿获得高精度三维点云模型方法. 利用线激光重构零部件三维点云模型,对模型中存在的夹角误差进行畸变补偿,实现高精度的点云数据获取. 搭建试验平台,选取仪表部件、双层孔件及栅极组件等不同材质及结构的试验对象,通过对比分析发现,畸变补偿后的均方根差分别减少0.009、0.036、0.024 mm. 结果表明点云模型畸变补偿方法有效,同时具有很好的通用性.

  • 图  1  线激光扫描示意图

    Figure  1.  Schematic diagram of line laser scanning

    图  2  坐标系夹角投影

    Figure  2.  Angle projection of coordinate system

    图  3  零件畸变示意图

    Figure  3.  Schematic diagram of parts distortion

    图  4  倾斜角$ {\theta _x} $$ {\theta _y} $$ {\theta _z} $计算原理示意图

    Figure  4.  Calculation principle diagram of inclination angle $ {\theta _x} $$ {\theta _y} $$ {\theta _z} $

    图  5  线激光试验平台示意图

    Figure  5.  Schematic diagram of line laser test platform

    图  6  双层孔件与点云模型

    Figure  6.  Double-layer hole parts and point cloud model

    图  7  点云模型畸变补偿前后对比

    Figure  7.  Comparison of point cloud model before and after distortion compensation

    图  8  试验对象与试验结果

    Figure  8.  Experimental objects and experimental results

    图  9  点对偏差值统计

    Figure  9.  Point pair deviation values statistics

    表  1  双层孔件相关参数

    Table  1.   Relevant parameters of double-layer hole parts mm

    双层孔件底部底座与
    球孔面存在高度差L1
    遮挡造成点云数据缺
    失部分的长度L2
    深度信息差L3相机线宽L4每次点云扫描的
    理论宽度L5
    每次点云扫描的
    实际宽度L6
    5.000 3.010 12×10−3 16.000 16.000 16.006
    下载: 导出CSV

    表  2  双层孔件线激光扫描倾斜角

    Table  2.   linear laser scanning inclination angle of double-layer hole parts (°)

    线激光入射角倾斜角$ {\theta _x} $倾斜角$ {\theta _y} $倾斜角$ {\theta _z} $
    35.0004.0000.0401.569
    下载: 导出CSV

    表  3  双层孔件的测量结果

    Table  3.   Measurement results of double-layer hole parts mm

    畸变补偿尺寸参数标准值试验1试验2试验3试验4试验5均方根差
    补偿前大孔直径
    小孔直径
    孔面长度
    孔面宽度
    30.00
    20.00
    50.00
    50.00
    29.85
    19.82
    49.88
    50.12
    29.78
    19.87
    49.88
    50.10
    29.78
    19.83
    49.91
    50.10
    29.85
    19.87
    49.89
    50.14
    29.72
    19.82
    49.91
    50.08
    0.21
    0.16
    0.10
    0.11
    补偿后大孔直径
    小孔直径
    孔面长度
    孔面宽度
    30.00
    20.00
    50.00
    50.00
    29.88
    19.90
    49.98
    50.01
    29.82
    19.90
    49.99
    50.03
    29.84
    19.87
    49.97
    50.03
    29.88
    19.87
    49.98
    50.01
    29.80
    19.86
    49.98
    50.02
    0.16
    0.12
    0.02
    0.02
    下载: 导出CSV
  • [1] BUONAMICI F, CARFAGNI M, FURFERI R, et al. Reverse engineering modeling methods and tools: A survey[J] . Computer-Aided Design and Applications,2018,15(3):443 − 464. doi: 10.1080/16864360.2017.1397894
    [2] HELLE R H, LEMU H G. A case study on use of 3D scanning for reverse engineering and quality control[J] . Materials Today:Proceedings,2021,45(6):5255 − 5262.
    [3] YU F, WEI Y X, YU H G. Research on target recognition method based on laser point cloud data[J] . Cyber Security Intelligence and Analytics,2020,928:1305 − 1310.
    [4] CHAO W, YONG K C. Smart scanning and near real-time 3D surface modeling of dynamic construction equipment from a point cloud[J] . Automation in Construction,2015,49(B):239 − 249.
    [5] NGUYEN C, CHOI Y. Comparison of point cloud data and 3D CAD data for on-site dimensional inspection of industrial plant piping systems[J] . Automation in Construction,2018,91:44 − 52. doi: 10.1016/j.autcon.2018.03.008
    [6] JOVANCEVIC I, PHAM H H, ORTEU J J, et al. 3D point cloud analysis for detection and characterization of defects on airplane exterior surface[J] . Journal of Nondestructive Evaluation,2017,36(4):74. doi: 10.1007/s10921-017-0453-1
    [7] XIAO J H, ZHANG J H, ADLER B, et al. Three-dimensional point cloud plane segmentation in both structured and unstructured environments[J] . Robotics and Autonomous Systems,2013,61(12):1641 − 1652. doi: 10.1016/j.robot.2013.07.001
    [8] WANG J, LI L P, SHI S S, et al. Fine exploration and control of subway crossing karst area[J] . Applied Sciences,2019,9(13):2588. doi: 10.3390/app9132588
    [9] CALIGNANO F, VEZZETTI E. Soft tissue diagnosis in maxillofacial surgery: A preliminary study on three-dimensional face geometrical features-based analysis[J] . Aesthetic Plastic Surgery,2010,34(2):200 − 211. doi: 10.1007/s00266-009-9410-4
    [10] FARAHANI N, BRAUN A, JUTT D, et al. Three-dimensional imaging and scanning: current and future applications for pathology[J] . Journal of Pathology Informatics,2017,8(1):1 − 10. doi: 10.4103/jpi.jpi_47_16
    [11] SUN S P, LI C Y, CHEE P W, et al. Three-dimensional photogrammetric mapping of cotton bolls in situ based on point cloud segmentation and clustering[J] . ISPRS Journal of Photogrammetry and Remote Sensing,2020,160:195 − 207. doi: 10.1016/j.isprsjprs.2019.12.011
    [12] WANG Y W, CHEN Y F. Non-destructive measurement of three-dimensional plants based on point cloud[J] . Plants,2020,9(5):571. doi: 10.3390/plants9050571
    [13] LI Y D, GU P H. Automatic localization and comparison for free-form surface inspection[J] . Journal of Manufacturing Systems,2006,25(4):251 − 268. doi: 10.1016/S0278-6125(08)00007-1
    [14] WANG J J, XU L J, LI X L, et al. A proposal to compensate platform attitude deviation's impact on laser point cloud from airborne LiDAR[J] . IEEE Transactions on Instrumentation & Measurement,2013,62(9):2549 − 2558.
    [15] BARNFATHER J D, ABRAM T. Efficient compensation of dimensional errors in robotic machining using imperfect point cloud part inspection data[J] . Measurement,2018,117:176 − 185. doi: 10.1016/j.measurement.2017.12.021
    [16] GONG C, YIN X, LIANG J, et al. A compensation filter method for extracting surface characteristic from optical point cloud [J]. Measurement Science and Technology, 2019, 31(2). DOI: 10.1088/1361-6501/ab42f0.
    [17] BALLIT A, MOUGHARBEL I, GHAZIRI H, et al. Visual sensor fusion with error compensation strategy toward a rapid and low-cost 3D scanning system for the lower residual limb[J] . IEEE Sensors Journal,2020,20(24):15043 − 15052. doi: 10.1109/JSEN.2020.3011172
  • 加载中
图(9) / 表(3)
计量
  • 文章访问数:  203
  • HTML全文浏览量:  258
  • PDF下载量:  47
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-12
  • 刊出日期:  2022-06-30

目录

    /

    返回文章
    返回