留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

2UPR/UPS/UP并联机构的动力学建模与仿真

陈文波 陈伟杰 岳义 韦宝琛 崔国华 潘颖

陈文波, 陈伟杰, 岳义, 韦宝琛, 崔国华, 潘颖. 2UPR/UPS/UP并联机构的动力学建模与仿真[J]. 上海工程技术大学学报, 2022, 36(3): 309-314. doi: 10.12299/jsues.21-0265
引用本文: 陈文波, 陈伟杰, 岳义, 韦宝琛, 崔国华, 潘颖. 2UPR/UPS/UP并联机构的动力学建模与仿真[J]. 上海工程技术大学学报, 2022, 36(3): 309-314. doi: 10.12299/jsues.21-0265
CHEN Wenbo, CHEN Weijie, YUE Yi, WEI Baochen, CUI Guohua, PAN Ying. Dynamic modeling and simulation of 2UPR/UPS/UP parallel mechanism[J]. Journal of Shanghai University of Engineering Science, 2022, 36(3): 309-314. doi: 10.12299/jsues.21-0265
Citation: CHEN Wenbo, CHEN Weijie, YUE Yi, WEI Baochen, CUI Guohua, PAN Ying. Dynamic modeling and simulation of 2UPR/UPS/UP parallel mechanism[J]. Journal of Shanghai University of Engineering Science, 2022, 36(3): 309-314. doi: 10.12299/jsues.21-0265

2UPR/UPS/UP并联机构的动力学建模与仿真

doi: 10.12299/jsues.21-0265
基金项目: 国家自然科学基金项目资助(51905337、51775165);上海市科委地方能力建设项目资助(18030501200)
详细信息
    作者简介:

    陈文波(1996−),男,在读硕士,研究方向为混联机器人与机构学. E-mail:17862517167@163.com

  • 中图分类号: TH112

Dynamic modeling and simulation of 2UPR/UPS/UP parallel mechanism

  • 摘要:

    以一种具有空间三自由度的2UPR/UPS/UP冗余并联机构为研究对象,根据机构的约束条件建立各支链的闭环约束矢量方程,求得机构的位置反解并得到雅可比矩阵. 根据运动学分析,得到3个驱动支链的变化规律,方便实现对机构的位姿控制. 在此基础上,利用虚功原理对机构的动力学进行分析,建立该机构的动力学模型. 最后,在典型工况下对机构的运动学和动力学分别进行Matlab算例仿真与Adams样机仿真,通过对比仿真结果验证运动学和动力学模型的正确性. 该方法为并联机构的设计和控制奠定理论基础,同时适用于类似机构的研究与分析.

  • 图  1  并联机器人坐标系简图

    Figure  1.  Coordinate system diagram of parallel robot

    图  2  Matlab计算得到的驱动杆长变化曲线

    Figure  2.  Variation curve of driving rod length calculated by Matlab

    图  3  Adams仿真得到的驱动杆长变化曲线

    Figure  3.  Variation curve of driving rod length obtained by Adams simulation

    图  4  并联机构工作空间

    Figure  4.  Workspace of parallel mechanism

    图  5  Matlab计算得到的驱动力变化曲线

    Figure  5.  Variation curve of driving force calculated by Matlab

    图  6  Adams仿真得到的驱动力变化曲线

    Figure  6.  Variation curve of driving force obtained by Adams simulation

    表  1  几何和惯性参数

    Table  1.   Geometric and inertial parameters

    参数数值单位
    $a$625mm
    $b$250mm
    ${m_C}$85kg
    ${m_{li}}(i = 1,2,3)$132kg
    ${{\boldsymbol{I}}_C}$Diag[36.2,36.2,0.2]kg·${{\rm{m}}^2}$
    ${{\boldsymbol{I}}}_{li}^{’}(i=1,2,3)$Diag[5.6,5.6,0.077]kg·${{\rm{m}}^2}$
    下载: 导出CSV
  • [1] SU H J, DIETMAIER P, MCCARTHY J M. Trajectory planning for constrained parallel manipulators[J] . Journal of Mechanical Design,2003,125(4):709 − 716.
    [2] ANGELES J. The qualitative synthesis of parallel manipulators[J] . Journal of Mechanical Design,2004,126(4):617 − 624.
    [3] HUANG Z, LI Q C. Type synthesis of symmetrical lower-mobility parallel mechanisms using the constraint-synthesis method[J] . The International Journal of Robotics Research,2003,22(1):59 − 79.
    [4] LI Q C, HERVE J M. Type synthesis of 3-DOF RPR-equivalent parallel mechanisms[J] . IEEE Transactions on Robotics,2014,30(6):1333 − 1343.
    [5] CHAI X X, WANG M, XU L M, et al. Dynamic modeling and analysis of a 2PRU-UPR parallel robot based on screw theory[J] . IEEE Access,2020,8:78868 − 78878. doi: 10.1109/ACCESS.2020.2989783
    [6] QAZANI MRC, PEDRAMMEHR S, RAHMANI A, et al. Kinematic analysis and workspace determination of hexarot-a novel 6-DOF parallel manipulator with a rotation-symmetric arm system[J] . Journal of Robotic Systems,2015,33:1686 − 1703.
    [7] YANG C F, ZHENG S T, JIN J, et al. Forward kinematics analysis of parallel manipulator using modified global Newton-Raphson method[J] . Journal of Central South University of Technology,2010,17(6):1264 − 1270. doi: 10.1007/s11771-010-0630-1
    [8] MA Z S, YU S H, HAN Y, et al. Zeroing neural network for bound-constrained time-varying nonlinear equation solving and its application to mobile robot manipulators[J] . Neural Computing and Applications,2021,33(21):14231 − 14245. doi: 10.1007/s00521-021-06068-6
    [9] KUCUCK S, BINGUL Z. The inverse kinematics solutions of fundamental robot manipulators with offset wrist[J] . IEEE International Conference on Mechatronics,2005:197 − 202.
    [10] BI Z M, JIN Y. Kinematic modeling of exechon parallel kinematic machine[J] . Robotics and Computer-Integrated Manufacturing,2011,27(1):186 − 193. doi: 10.1016/j.rcim.2010.07.006
    [11] LI M, HUANG T, CHETWYND D G, et al. Forward position analysis of the 3DOF module of the trivariant: A 5-DOF reconfigurable hybrid robot[J] . Journal of Mechanical Design,2006,128(1):319 − 322. doi: 10.1115/1.2125971
    [12] ZHANG D S, XU Y D, YAO J T, et al. Kinematics modelling and optimization design of a 5-DOF hybrid manipulator[J] . International journal of robotics& automation,2018,33(4):407 − 417.
    [13] 陈修龙, 陈林林, 梁小夏. 4自由度冗余驱动并联机构运动学和工作空间分析[J] . 农业机械学报,2014,45(8):307 − 313. doi: 10.6041/j.issn.1000-1298.2014.08.049
    [14] XIN G Y, DENG H, ZHONG G L. Closed-form dynamics of a 3-DOF spatial parallel manipulator by combining the Lagrangian formulation with the virtual work principle[J] . Nonlinear Dynamics,2016,86(2):1329 − 1347. doi: 10.1007/s11071-016-2967-y
    [15] LIU S Z, ZHU Z C, SUN Z P, et al. Kinematics and dynamics analysis of a three-degree-of-freedom parallel manipulator[J] . Journal of Central South University,2014,21:2660 − 2666.
    [16] XIE S L, HU K M, LIU H T, et al. Dynamic modeling and performance analysis of a new redundant parallel rehabilitation robot[J] . IEEE Access,2020,8:222211 − 25. doi: 10.1109/ACCESS.2020.3043429
    [17] 王潇剑, 吴军, 岳义, 等. 3自由度并联机构的动力学性能评价[J] . 清华大学学报,2019,59(10):838 − 846.
    [18] WU P D, XIONG H G, KONG J Y. Dynamic analysis of 6-SPS parallel mechanism[J] . International Journal of Mechanics and Materials Design,2012,8(2):121 − 128. doi: 10.1007/s10999-012-9181-y
    [19] GALLARDO J, RICO J M, FRISOLI A, et al. Dynamics of parallel manipulators by means of screw theory[J] . Mechanism and Machine Theory,2003,38(11):1113 − 1131.
  • 加载中
图(6) / 表(1)
计量
  • 文章访问数:  390
  • HTML全文浏览量:  142
  • PDF下载量:  47
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-24
  • 刊出日期:  2022-06-30

目录

    /

    返回文章
    返回