留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Bi2MoO6/ZnO复合材料的制备及光催化性能

龙盈桥 葛建华 宋凤革 王丹 王思尧 王新 孙彦刚

龙盈桥, 葛建华, 宋凤革, 王丹, 王思尧, 王新, 孙彦刚. Bi2MoO6/ZnO复合材料的制备及光催化性能[J]. 上海工程技术大学学报, 2023, 37(1): 20-26. doi: 10.12299/jsues.21-0280
引用本文: 龙盈桥, 葛建华, 宋凤革, 王丹, 王思尧, 王新, 孙彦刚. Bi2MoO6/ZnO复合材料的制备及光催化性能[J]. 上海工程技术大学学报, 2023, 37(1): 20-26. doi: 10.12299/jsues.21-0280
LONG Yingqiao, GE Jianhua, SONG Fengge, WANG Dan, WANG Siyao, WANG Xin, SUN Yan'gang. Preparation and photocatalytic properties ofBi2MoO6/ZnO composite[J]. Journal of Shanghai University of Engineering Science, 2023, 37(1): 20-26. doi: 10.12299/jsues.21-0280
Citation: LONG Yingqiao, GE Jianhua, SONG Fengge, WANG Dan, WANG Siyao, WANG Xin, SUN Yan'gang. Preparation and photocatalytic properties ofBi2MoO6/ZnO composite[J]. Journal of Shanghai University of Engineering Science, 2023, 37(1): 20-26. doi: 10.12299/jsues.21-0280

Bi2MoO6/ZnO复合材料的制备及光催化性能

doi: 10.12299/jsues.21-0280
基金项目: 上海工程技术大学大学生创新训练项目资助(cx2004012)
详细信息
    作者简介:

    龙盈桥(2000−),女,在读本科生,研究方向为环境工程. E-mail:2536211910@qq.com

    通讯作者:

    孙彦刚(1971−),男,副教授,博士,研究方向为无机纳米功能材料. E-mail: syg021@sues.edu.cn

  • 中图分类号: O69

Preparation and photocatalytic properties ofBi2MoO6/ZnO composite

  • 摘要: 采用两步水热法合成由纳米片组装而成的三维Bi2MoO6/ZnO微花,通过调控复合物中Bi2MoO6,制备一系列不同摩尔比的Bi2MoO6/ZnO微花. 研究表明,Bi2MoO6/ZnO−10%复合材料在可见光照射20 min后,对罗丹明B(RhB)溶液的光催化降解率达到79.61%,相较于纯ZnO和Bi2MoO6,复合材料具有更好的光催化性能. 通过紫外可见光谱(UV−Vis)和室温荧光光谱(PL)分析推测,由于复合材料的光吸收范围提高和异质结的形成抑制了光生载流子的复合,进而提升了Bi2MoO6/ZnO微花光催化性能.
  • 图  1  ZnO、Bi2MoO6和BMO/ZnO−10%的XRD图谱

    Figure  1.  XRD patterns of ZnO, Bi2MoO6 and BMO/ZnO−10%

    图  2  ZnO、Bi2MoO6、BMO/ZnO−10%的SEM图像

    Figure  2.  SEM images of ZnO, Bi2MoO6 and BMO/ZnO−10%

    图  3  样品的紫外−可见吸收光谱及其带隙分析

    Figure  3.  UV−Visible absorption spectrum and band gap analysis of samples

    图  4  ZnO、Bi2MoO6和BMO/ZnO−10%的红外光谱

    Figure  4.  FTIR spectra of ZnO, Bi2MoO6 and BMO/ZnO−10%

    图  5  ZnO和BMO/ZnO−10%复合材料的光致发光谱

    Figure  5.  Photoluminescence spectrum of ZnO and BMO/ZnO−10% composite material

    图  6  样品的光催化性能

    Figure  6.  Photocatalytic properties of samples

    图  7  有无捕获剂时BMO/ZnO−10%的光催化性能

    Figure  7.  Photocatalytic properties of BMO/ZnO−10% sample with/without scavenger

    图  8  BMO/ZnO−10%光催化降解RhB机理图

    Figure  8.  Mechanism diagram of photocatalytic degradation of RhB by BMO/ZnO−10%

  • [1] MU J B, SHAO C L, GUO Z C, et al. High photocatalytic activity of ZnO-carbon nanofiber heteroarchitectures[J] . ACS Applied Materials & Interfaces,2011,3(2):590 − 596. doi: 10.1021/am101171a
    [2] RAVICHANDRAN K, SINDHUJAJA E. Fabrication of cost effective g-C3N4+Ag activated ZnO photocatalyst in thin film form for enhanced visible light responsive dye degradation[J] . Materials Chemistry and Physics,2019,221:203 − 215. doi: 10.1016/j.matchemphys.2018.09.038
    [3] ANDRADE G R S, Nascimento C C, LIMA Z M, et al. Star-shaped ZnO/Ag hybrid nanostructures for enhanced photocatalysis and antibacterial activity[J] . Applied Surface Science,2017,399:573 − 582. doi: 10.1016/j.apsusc.2016.11.202
    [4] ZHANG B, LI M M, WANG X G, et al. Pompon-like structured g-C3N4/ZnO composites and their application in visible light photocatalysis[J] . Research on Chemical Intermediates,2018,44(11):6895 − 6906. doi: 10.1007/s11164-018-3528-4
    [5] NIE M, LIAO J M, CAI H L, et al. Photocatalytic property of silver enhanced Ag/ZnO composite catalyst[J] . Chemical Physics Letters,2021,768(1):138394. doi: 10.1016/j.cplett.2021.138394
    [6] GE J H, SUN Y G, CHEN W W, et al. Z-scheme heterojunction based on NiWO4/WO3 microspheres with enhanced photocatalytic performance under visible light[J] . Dalton Transactions,2021,50(39):13801 − 13814. doi: 10.1039/D1DT02558A
    [7] ZHANG G, LIU G, WAG L Z, et al. Inorganic perovskite photocatalysts for solar energy utilization[J] . Chemical Society Reviews,2016,45(21):5951 − 5984. doi: 10.1039/C5CS00769K
    [8] KASINATHAN M, THIRIPURANTHAGAN S, SIVKUMAR A. Fabrication of sphere-like Bi2MoO6/ZnO composite catalyst with strong photocatalytic behavior for the detoxification of harmful organic dyes[J] . Optical Materials,2020,109:110218. doi: 10.1016/j.optmat.2020.110218
    [9] ZHANG M Y, SHAO C L, MU J B, et al. One-dimensional Bi2MoO6/TiO2 hierarchical heterostructures with enhanced photocatalytic activity[J] . CrystEngComm,2012,14(2):605 − 612. doi: 10.1039/C1CE05974B
    [10] ZHANG G P, CHEN D Y, LI N J, et al. Fabrication of Bi2MoO6/ZnO hierarchical heterostructures with enhanced Visible-light photocatalytic activity[J] . Applied Catalysis B: Environmental,2019,250:313 − 324. doi: 10.1016/j.apcatb.2019.03.055
    [11] CHANKHANITTHA T, NANAN S. Visible-light-driven photocatalytic degradation of ofloxacin (OFL) antibiotic and Rhodamine B (RhB) dye by solvothermally grown ZnO/Bi2MoO6 heterojunction[J] . Journal of Colloid and Interface Science,2021,582:412 − 427. doi: 10.1016/j.jcis.2020.08.061
    [12] TAUSEEF M, FAISAL I, SADAF Y, et al. Multi metal oxide NiO-CdO-ZnO nanocomposite-synthesis, structural, optical, electrical properties and enhanced sunlight driven photocatalytic activity[J] . Ceramics International,2020,46(2):2421 − 2437. doi: 10.1016/j.ceramint.2019.09.236
    [13] XIAO Y H, XU C Q, ZHANG W D. Facile synthesis of Ni-doped WO3 nanoplate arrays for effective photoelectrochemical water splitting[J] . Journal of Solid State Electrochemistry,2017,21(11):3355 − 3364. doi: 10.1007/s10008-017-3680-6
    [14] 吴俊豪, 崔哲, 江宇璐, 等. 硫化铋纳米结构的可控合成及其光催化性能[J] . 东华大学学报(自然科学版),2018,44(3):403 − 408.
    [15] SUN Y G, CAI L Y, LIU X J, et al. Tailoring heterostructures of Ag/Cu2O hybrids for enhanced photocatalytic degradationdegradation[J] . Journal of Physics & Chemistry of Solids,2017,111:75 − 81. doi: 10.1016/j.jpcs.2017.07.018
    [16] JUNG H, PHAM T T, SHIN E W. Interactions between ZnO nanoparticles and amorphous g-C3N4 nanosheets in thermal formation of g-C3N4/ZnO composite materials: The annealing temperature effect[J] . Applied Surface Science,2018,458:369 − 381. doi: 10.1016/j.apsusc.2018.07.048
    [17] XU Y, SCHOONEN M A A. The absolute energy positions of conduction and valence bands of selected semiconducting minerals[J] . American Mineralogist,2000,85(3/4):543 − 556. doi: 10.2138/am-2000-0416
  • 加载中
图(8)
计量
  • 文章访问数:  318
  • HTML全文浏览量:  140
  • PDF下载量:  54
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-05
  • 刊出日期:  2023-03-31

目录

    /

    返回文章
    返回