留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于等厚未变形切削厚度残余应力预测

王卓 曹珍珍 杨青平 刘钢

王卓, 曹珍珍, 杨青平, 刘钢. 基于等厚未变形切削厚度残余应力预测[J]. 上海工程技术大学学报, 2023, 37(1): 41-47, 60. doi: 10.12299/jsues.22-0017
引用本文: 王卓, 曹珍珍, 杨青平, 刘钢. 基于等厚未变形切削厚度残余应力预测[J]. 上海工程技术大学学报, 2023, 37(1): 41-47, 60. doi: 10.12299/jsues.22-0017
WANG Zhuo, CAO Zhenzhen, YANG Qingping, LIU Gang. Residual stress prediction based on equal thickness undeformed cutting thickness[J]. Journal of Shanghai University of Engineering Science, 2023, 37(1): 41-47, 60. doi: 10.12299/jsues.22-0017
Citation: WANG Zhuo, CAO Zhenzhen, YANG Qingping, LIU Gang. Residual stress prediction based on equal thickness undeformed cutting thickness[J]. Journal of Shanghai University of Engineering Science, 2023, 37(1): 41-47, 60. doi: 10.12299/jsues.22-0017

基于等厚未变形切削厚度残余应力预测

doi: 10.12299/jsues.22-0017
基金项目: 国家自然科学基金项目资助 (51775328)
详细信息
    作者简介:

    王卓:王 卓(1995−),男,在读硕士,研究方向为机械制造及其自动化. E-mail:2839025569@qq.com

    通讯作者:

    刘 钢(1977−),男,教授级高级工程师,博士,研究方向为航空航天高端自动化装备和工艺核心技术.E-mail:liugang@sues.edu.cn

  • 中图分类号: TH162

Residual stress prediction based on equal thickness undeformed cutting thickness

  • 摘要: 机械加工引起的残余应力一直是制造领域关注的重点,表面残余应力状态能反映零部件性能与使用寿命. 为更好地了解铣削加工零件表面与次表面残余应力状态,将铣削不等厚未变形切削厚度转换为等厚未变形切削厚度进行微元铣削力建模. 通过仿真建立2D等厚未变形切削厚度模型研究切削钛合金时的温度,结合微元力与温度模型对铣削后加工表面残余应力进行预测,并将残余应力预测值、仿真值与实测值进行比较. 结果表明,残余应力仿真值与实测值的变化趋势基本一致,通过等厚未变形切削厚度建立的残余应力预测模型能够反映表面应力状态.
  • 图  1  等厚切削层简化

    Figure  1.  Equal thickness cutting layer simplification

    图  2  等效平面与法平面内不等厚二维正交切削

    Figure  2.  Two dimensional orthogonal cutting of unequal thickness in equivalent plane and normal plane

    图  3  二维切削仿真模型

    Figure  3.  Two dimensional cutting simulation model

    图  4  加工过程中应力加载

    Figure  4.  Stress loading during machining

    图  5  铣削试验与试验装置

    Figure  5.  Milling experiment and equipment

    图  6  铣削力

    Figure  6.  Milling force figure

    图  7  有限元仿真图

    Figure  7.  Finite element simulation figure

    图  8  残余应力曲线

    Figure  8.  Residual stress curve

    表  1  TC4本构参数表

    Table  1.   TC4 J−C model parameters

    A/MPaB/MPaCmnTm/℃Tr/℃
    862.5331.20.0120.80.34158020
    下载: 导出CSV

    表  2  TC4热导率和比热容

    Table  2.   TC4 thermal conductivity and specific heat capacity

    物理性能20 ℃100 ℃200 ℃300 ℃400 ℃500 ℃
    热导率/(W•(m•℃)−1)6.87.48.79.810.311.8
    比热容/(J•(kg•℃)−1)611624653674691703
    下载: 导出CSV

    表  3  TC4损伤参数

    Table  3.   TC4 failure model parameters

    d1d2d3d4d5
    −0.090.270.480.0143.87
    下载: 导出CSV

    表  4  试验参数表

    Table  4.   Experimental parameters

    序号铣削速度/
    (m•min−1)
    每齿进给/
    (mm•min−1)
    铣削深度/
    mm
    铣削宽度/
    mm
    1600.0670.5
    2800.06
    3800.08
    4900.08
    51000.08
    61100.08
    下载: 导出CSV
  • [1] 季霞. 微量润滑切削表面残余应力预测建模[D]. 上海: 上海交通大学, 2014.
    [2] CARL E J. A mathematical model for the estimate ion of the effects of residual stresses in aluminum plates[D]. Saint Louis: Washington University, 2005.
    [3] WAN M, YE X Y, YANG Y, et al. Theoretical prediction of machining-induced residual stresses in three-dimensional oblique milling processes[J] . International Journal of Mechanical Sciences,2017,133:426 − 437.
    [4] LIU C R, BARASH M M. Variables governing patterns of mechanical residual stress in a machined surface[J] . Journal of Engineering for Industry,1982,104(3):257 − 264.
    [5] YOUNG K A. Machining-induced residual stress and distortion of thin parts[D]. Saint Louis: Washington University, 2005.
    [6] CAPELLO E. Residual stresses in turning Part I: Influence of process parameters[J] . Journal of Materials Processing Technology,2005,160(2):221 − 228. doi: 10.1016/j.jmatprotec.2004.06.012
    [7] LIU M, TAKAGI J, TSUKUDA A. Effect of tool nose radius and tool wear on residual stress distribution in hard turning of bearing steel[J] . Journal of Materials Processing Technology,2004,150(3):234 − 241. doi: 10.1016/j.jmatprotec.2004.02.038
    [8] 张峥. 飞机弱刚性铝合金结构件的残余应力和加工变形控制研究[D]. 南京: 南京航空航天大学, 2016.
    [9] ZHU S S, LIU J, DENG X. Modification of strain rate strengthening coefficient for Johnson-Cook constitutive model of Ti6Al4V alloy[J] . Materials Today Communications,2021,26:102016.
    [10] WU H B, TO S. Serrated chip formation and their adiabatic analysis by using the constitutive model of titanium alloy in high speed cutting[J] . Journal of Alloys and Compounds,2015,629:368 − 373. doi: 10.1016/j.jallcom.2014.12.230
    [11] WAN M, YE X Y, WEN D Y, et al. Modeling of machining-induced residual stresses[J] . Journal of Materials Science,2019,54(1):1 − 35.
    [12] HUANG X D, ZHANG X M, DING H. An analytical of residual stress for flank milling of Ti-6Al-4V[J] . Procedia CIRP,2015,31:287 − 292. doi: 10.1016/j.procir.2015.03.061
    [13] ZHANG W Q, WANG X L, HU Y J, et al. Predictive modelling of microstructure changes, micro-hardness and residual stress in machining of 304 austenitic stainless steel[J] . International Journal of Machine Tools & Manufacture: Design, Research and Application,2018,130-131:36 − 48.
    [14] PAN Z, SHIH D S, GARMESTANI H, et al. Residual stress prediction for turning of Ti-6Al-4V considering the microstructure evolution[J] . Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture,2019,233(1):109 − 117.
    [15] JI X, KANG Z, ZHANG X P. A new methodology to validate the cutting temperature theoretical model in super-finish hard machining[J] . Avanced Science Letters,2011,4(4/5):1561 − 1565.
    [16] LIANG S Y, SU J C. Residual stress modeling in orthogonal machining[J] . CIRP Annals Manfacturing Technology,2007,56(1):65 − 68. doi: 10.1016/j.cirp.2007.05.018
    [17] 周瑞虎. 复杂曲面铣削加工表面残余应力预测与实验研究[D]. 武汉: 华中科技大学, 2019.
    [18] LIANG X, LIU Z, WANG B, et al. Prediction of residual stress with multi-physics model for ortho-gonal cutting Ti-6Al-4V under various tool wear morphologies[J] . Journal of Materials Processing Technology,2021,288:116908. doi: 10.1016/j.jmatprotec.2020.116908
    [19] RAHUL Y, VIPINDAS K, MATHEW J. Methodology for prediction of sub-surface residual stress in micro end milling of Ti-6Al-4V alloy[J] . Journal of Manufacturing Processes,2021,62:600 − 612. doi: 10.1016/j.jmapro.2020.12.031
    [20] ÖZEL T, ALTAN T. Process simulation using finite element method: Prediction of cutting forces, tool stresses and temperatures in high-speed flat end milling[J] . International Journal of Machine Tools and Manufacture,2000,40(5):713 − 738.
    [21] LI B L, HU Y J, WANG X L, et al. An analytical model of oblique cutting with application to end milling[J] . Machining Science and Technology,2011,15(4):453 − 484.
    [22] WALDORF D J, DEVOR R E, KAPOOR S G. A slip-line field for ploughing during orthogonal cutting[J] . Journal of Manufacturing Science & Engineering,1998,120(4):693 − 699.
    [23] 易俊杰. 钛合金高速铣削力试验与有限元数值分析[D]. 南京: 南京航空航天大学, 2009.
  • 加载中
图(8) / 表(4)
计量
  • 文章访问数:  228
  • HTML全文浏览量:  116
  • PDF下载量:  39
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-25
  • 刊出日期:  2023-03-31

目录

    /

    返回文章
    返回