留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

碳中和目标情景下中国燃料电池车总拥有成本研究

王艳红 符钢战

王艳红, 符钢战. 碳中和目标情景下中国燃料电池车总拥有成本研究[J]. 上海工程技术大学学报, 2022, 36(3): 249-260. doi: 10.12299/jsues.22-0029
引用本文: 王艳红, 符钢战. 碳中和目标情景下中国燃料电池车总拥有成本研究[J]. 上海工程技术大学学报, 2022, 36(3): 249-260. doi: 10.12299/jsues.22-0029
WANG Yanhong, FU Gangzhan. Total cost of ownership of fuel cell vehicles in China under carbon neutral target scenario[J]. Journal of Shanghai University of Engineering Science, 2022, 36(3): 249-260. doi: 10.12299/jsues.22-0029
Citation: WANG Yanhong, FU Gangzhan. Total cost of ownership of fuel cell vehicles in China under carbon neutral target scenario[J]. Journal of Shanghai University of Engineering Science, 2022, 36(3): 249-260. doi: 10.12299/jsues.22-0029

碳中和目标情景下中国燃料电池车总拥有成本研究

doi: 10.12299/jsues.22-0029
详细信息
    作者简介:

    王艳红,女,硕士,研究方向为新能源汽车与新能源. E-mail:wyh319217@sina.com

  • 中图分类号: TK91

Total cost of ownership of fuel cell vehicles in China under carbon neutral target scenario

  • 摘要:

    以碳中和目标为情景,建立燃料电池车总拥有成本(Total Cost of Ownership, TCO)计算模型;应用学习曲线理论预测构成燃料电池车的关键部件的成本变化趋势;讨论当下主流制氢技术路径的未来制氢成本;通过TCO反映我国燃料电池车未来成本趋势、竞争力及关键影响因素.

  • 图  1  研究框架

    Figure  1.  Research framework

    图  2  燃料电池车TCO计算模型

    Figure  2.  TCO calculation model of fuel cell vehicles

    图  3  全球纯电动车和燃料电池车存量规模情景假设

    Figure  3.  Global battery electric vehicle (BEV) and fuel cell vehicle (FCEV) inventory size scenario hypothesis

    图  4  关键部件在燃料电池车不同规模部署情景下的成本变化趋势

    Figure  4.  Cost trends of key components in different scale deployment scenarios of fuel cell vehicles

    图  5  燃料电池车在不同规模情景下的整车购置成本预测

    Figure  5.  Purchase cost forecast of fuel cell vehicles in different scale scenarios

    图  6  未来主流制氢技术形式

    Figure  6.  Future mainstream hydrogen production technology

    图  7  基于全球规模电解槽成本预测

    Figure  7.  Cost forecast for electrolyzers based on global scale

    图  8  经济驱动型制氢技术组合情景下制氢技术类型权重、制氢成本及碳排放情况

    Figure  8.  Proportion, average cost and carbon emission of hydrogen production technology types in combination scenario of economic driven hydrogen production technology

    图  9  低碳驱动型制氢技术组合情景下制氢技术类型权重、制氢成本及碳排放情况

    Figure  9.  Proportion, average cost and carbon emission of hydrogen production technology types in combination scenario of low-carbon driven hydrogen production technology

    图  10  车辆不同规模部署情景下燃料电池车年度运营成本

    Figure  10.  Annual operating costs of fuel cell vehicles in different scale deployment scenarios

    图  11  车辆乐观规模和基本规模部署情景下燃料电池车年度TCO

    Figure  11.  Annual TCO for fuel cell vehicles in optimistic-scale and base-scale vehicle deployment scenarios

    图  12  车辆不同规模部署情景及不同制氢技术组合燃料电池车每公里TCO

    Figure  12.  TCO per km of fuel cell vehicles in different scale deployment scenarios and different hydrogen technology combinations

    图  13  经济驱动型制氢技术组合氢价下燃料电池车成本竞争力

    Figure  13.  Cost competitiveness of fuel cell vehicles for hydrogen price by the combination scenario of economic driven hydrogen production technology

    图  14  DSMR(含CCS的天然气站内制氢)制氢的燃料电池车成本竞争力

    Figure  14.  Cost competitiveness of fuel cell vehicles for hydrogen production by DSMR (distributed hydrogen production by nature gas with CCS)

    图  15  DWE(风电/光伏站内电解水制氢)制氢来源的燃料电池车成本竞争力

    Figure  15.  Cost competitiveness of fuel cell vehicles for hydrogen production by DWE (electrolysis of water for distributed hydrogen production by wind power/ photovoltaic power)

    图  16  车辆总拥有成本对氢气价格的敏感性

    Figure  16.  Sensitivity analysis of total cost of ownership to hydrogen price

    图  20  车辆总拥有成本对碳税的敏感性

    Figure  20.  Sensitivity analysis of total cost of ownership to carbon tax

    图  17  车辆总拥有成本对年度行驶里程的敏感性

    Figure  17.  Sensitivity analysis of total cost of ownership to annual mileage

    图  18  车辆总拥有成本对百公里能耗的敏感性

    Figure  18.  Sensitivity analysis of total cost of ownership to 100 km energy consumption

    图  19  车辆总拥有成本对燃料电池系统学习率的敏感性

    Figure  19.  Sensitivity analysis of total cost of ownership to fuel cell system learning rate

    表  1  典型工况的我国燃料电池车购置成本结构

    Table  1.   Purchase cost structure of fuel cell vehicles in China for typical working conditions

    项目燃料电池客车燃料电池物流车燃料电池港口重卡
    整车购置成本(不含补贴)/万元195130150
    燃料电池系统成本/(万元•kW−11.11.51.0
    燃料电池系统成本占比/%535853
    车载储氢系统成本/(万元•kg−11.101.330.71
    车载储氢系统成本占比/%121117
    动力电池系统成本/(万元•(kWh)−10.150.230.15
    动力电池系统成本占比/%8410
    驱动电机系统成本/(万元•kW−10.1100.0800.047
    驱动电机系统成本占比/%1047
    车身及其他设施成本占比/%172313
    下载: 导出CSV

    表  2  关键部件成本及学习率设置

    Table  2.   Key component cost and learning rate

    关键部件初始成本底线成本学习率/%
    燃料电池系统/(元•kW−11000020620
    车载储氢系统/(元•kg−110000183315
    动力电池系统/(元•(kWh)−1150086115
    驱动电机系统/(元•kW−18003715
    下载: 导出CSV

    表  3  我国天然气制氢成本(含CCS)预测

    Table  3.   Cost forecast of hydrogen production from natural gas (including CCS) in China 元/kg

    制氢类型2020年2030年2040年2050年
    DSMR分布式站内天然气制氢11.6511.2110.8510.67
    CSMR集中式天然气制氢12.2711.7911.4011.21
    下载: 导出CSV

    表  4  我国集中式煤制氢成本(含CCS)预测

    Table  4.   Cost forecast of hydrogen centralized production from coal (including CCS) in China 元/kg

    制氢类型2020年2030年2040年2050年
    CG集中式煤制氢成本17.1616.0615.7515.54
    下载: 导出CSV

    表  5  不同电力来源及形式的电解水制氢成本预测

    Table  5.   Cost prediction of hydrogen production from electrolysis of water by different power sources and forms 元/kg

    制氢类型2020年2025年2030年2040年2050年
    DWE(并网电力分布
    式站内电解水制氢)成本
    33.2228.4827.9828.34
    CWE(风电/光伏集中
    式电解水制氢)成本
    20.2814.3010.107.035.10
    DWE(风电/光伏分布
    式站内电解水制氢)成本
    14.8210.627.555.61
    下载: 导出CSV

    表  6  车辆TCO竞争力分析框架

    Table  6.   Competitiveness analysis framework of total cost of ownership for vehicles

    TCO项目燃料电池车纯电动车燃油车
    购置成本当前车辆购置成本当前购置成本当前购置成本当前购置成本
    关键系统部件成本燃料电池系统成本
    车载储氢系统成本
    动力电池系统成本动力电池系统成本
    驱动电机系统成本驱动电机系统成本
    运营成本燃料费用氢气价格电价油价
    每公里能耗每公里能耗每公里能耗
    年度行驶里程年度行驶里程年度行驶里程
    生命周期生命周期生命周期
    维保费用年度购置成本的8%[18]年度购置成本的5%年度购置成本的10%[18]
    CO2排放成本氢气制备过程CO2排放量发电过程CO2排放量柴油CO2排放因子
    碳税碳税碳税
    下载: 导出CSV
  • [1] McKinsey & Company. A portfolio of power-trains for Europe: A fact based analysis[J]. [S.l.: s.n.], 2010.
    [2] JAMES B D, HUYA-KOUADIO J M, HOUCHINS C, et al. Mass production cost estimation of direct H2 PEM fuel cell systems for transportation applications (2012—2016)[R]. Arlington: Strategic Analysis Inc., 2016.
    [3] COX B, BAUER C, BELTRAN A M, et al. Life cycle environmental and cost comparison of current and future passenger cars under different energy scenarios[J] . Applied Energy,2020,269:115021. doi: 10.1016/j.apenergy.2020.115021
    [4] MAO S Y, BASMA H, RAGON P L, et al. Total cost of ownership for heavy trucks in China: Battery electric, fuel cell, and diesel trucks[R]. Washington: International Council on Clean Transportation, 2021.
    [5] 陈志祥. 学习曲线及在工业生产运作研究中的应用综述[J] . 中国工程科学,2007(7):82 − 88,94.
    [6] IEA. Entering the decade of electric drive[J]. Paris: International Energy Agency, 2020.
    [7] DOE U. Multiyear research development and demonstration plan: planned program activities for 2011—2020[J] . Office DFCT,2017,3:4.
    [8] KÖRNER A, TAM C, BENNETT S, et al. Technology roadmap-hydrogen and fuel cells[J]. Paris: International Energy Agency, 2015.
    [9] MARCINKOSKI J, VIJAYAGOPAL R, ADAMS J, et al. DOE advanced truck technologies: Subsection of the electrified powertrain roadmap technical targets for hydrogen-fueled long-haul tractor-trailer trucks[EB/OL]. (2019-10-31)[2022-01-30]. https://www.hydrogen.energy.gov/pdfs/19006_hydrogen_class8_long_haul_truck_targ ets. pdf.
    [10] MAYER T, KREYENBERG D, WIND J, et al. Feasibility study of 2020 target costs for PEM fuel cells and lithium-ion batteries: A two-factor experience curve approach[J] . International Journal of Hydrogen Energy,2012,37(19):14463 − 14474. doi: 10.1016/j.ijhydene.2012.07.022
    [11] NYKVIST B R, NILSSON M N. Rapidly falling costs of battery packs for electric vehicles[J] . Nature Climate Change,2015,5(4):329 − 332. doi: 10.1038/nclimate2564
    [12] National Research Council. Transitions to alternative vehicles and fuels[M]. Washington: National Academies Press, 2013.
    [13] BOUCKAERT S, PALES A F, MCGLADE C, et al. Net zero by 2050: A roadmap for the global energy sector[R]. Washington: IEA, 2021.
    [14] Hydrogen and Fuel Cell Technologies Office. DOE H2A Analysis[EB/OL].[2021-12-20]. https://www.energy.gov/eere/fuelcells/doe-h2a-analysis.
    [15] CHINA E R I. 2050 High renewable energy penetration scenario and roadmap study[R]. Beijing: Energy Research Institute, 2015.
    [16] 国家发改委能源研究所, 隆基股份, 山西煤业化工集团. 中国2050年光伏发展展望[C]//Proceedings of UNFCCC COP25. Madrid: United Nations Climate Change Conference, 2019.
    [17] International Renewable Energy Agency. Green hydrogen cost reduction: Scaling up electrolysers to meet the 1.5 ℃ climate goal[R]. Abu Dhabi: International Renewable Energy Agency, 2020.
    [18] CRETI A , KOTELNIKOVA A , MEUNIER G, et al. A cost benefit analysis of fuel cell electric vehicles[EB/OL]. [2021-12-20]. https://hal.archives-ouvertes.fr/hal-01116997.
    [19] 张希良. 面向2060年碳中和的能源经济转型 [EB/OL]. (2021-04-01)[2021-12-26]. https://www.mee.gov.cn/home/ztbd/2020/wfcsjssdgz/wfcsxwbd/ylgd/202104/P020210401595660592840.pdfjssdgz/wfcsxwbd/ylgd/202104/P020210401595660592840.pdf
    [20] KÖRNER A, TAM C, BENNETT S, et al. Technology roadmap: Hydrogen and fuel cells[R]. Paris: International Energy Agency, 2015.
  • 加载中
图(20) / 表(6)
计量
  • 文章访问数:  259
  • HTML全文浏览量:  101
  • PDF下载量:  60
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-02-22
  • 刊出日期:  2022-06-30

目录

    /

    返回文章
    返回