留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

多级花状Cu/TiO2光催化还原硝基苯制苯胺的研究

孙红华 张念陈 孙彪 李鹏 许凤霞 王金果

孙红华, 张念陈, 孙彪, 李鹏, 许凤霞, 王金果. 多级花状Cu/TiO2光催化还原硝基苯制苯胺的研究[J]. 上海工程技术大学学报, 2023, 37(4): 343-350. doi: 10.12299/jsues.22-0199
引用本文: 孙红华, 张念陈, 孙彪, 李鹏, 许凤霞, 王金果. 多级花状Cu/TiO2光催化还原硝基苯制苯胺的研究[J]. 上海工程技术大学学报, 2023, 37(4): 343-350. doi: 10.12299/jsues.22-0199
SUN Honghua, ZHANG Nianchen, SUN Biao, LI Peng, XU Fengxia, WANG Jinguo. Study on photocatalytic nitrobenzene reduction to aniline over hierarchical flower-like Cu/TiO2[J]. Journal of Shanghai University of Engineering Science, 2023, 37(4): 343-350. doi: 10.12299/jsues.22-0199
Citation: SUN Honghua, ZHANG Nianchen, SUN Biao, LI Peng, XU Fengxia, WANG Jinguo. Study on photocatalytic nitrobenzene reduction to aniline over hierarchical flower-like Cu/TiO2[J]. Journal of Shanghai University of Engineering Science, 2023, 37(4): 343-350. doi: 10.12299/jsues.22-0199

多级花状Cu/TiO2光催化还原硝基苯制苯胺的研究

doi: 10.12299/jsues.22-0199
详细信息
    作者简介:

    孙红华(1994−),男,硕士,研究方向为柴油车尾气净化. E-mail: 18605625362@163.com

    通讯作者:

    王金果(1982−),男,教授,博士,研究方向为环境污染控制. E-mail: Jinguowang1982@sues.edu.cn

  • 中图分类号: O643.32

Study on photocatalytic nitrobenzene reduction to aniline over hierarchical flower-like Cu/TiO2

  • 摘要: 采用醇解溶剂热法制备金属Cu修饰的系列多级花状TiO2光催化剂(X% Cu/TiO2),并以可见光光催化硝基苯还原制苯胺为模型反应评价其光催化性能. 结果显示:3.3% Cu/TiO2光催化剂展现出优异的催化活性,可见光催化3 h硝基苯的转化率达到83%. 主要原因有两个方面:多级介孔结构增加了催化剂比表面积,促进了硝基苯吸附、扩散及其与催化剂的接触;金属Cu的引入降低了催化剂的带宽,增强了光生电子和空穴的分离能力,进而提升了其光催化性能. 此外,3.3% Cu/TiO2光催化剂表现出良好的稳定性,具有一定的潜在实用价值.
  • 图  1  不同催化剂的场发射扫描电镜图

    Figure  1.  FESEM images of different catalysts

    图  2  不同催化剂的N2吸脱附等温线和孔径分布曲线

    Figure  2.  N2 adsorption-desorption isotherms and pore size distribution curves of different catalysts

    图  3  不同催化剂的XRD谱图

    Figure  3.  XRD spectrogram of different catalysts

    图  4  不同催化剂的拉曼光谱

    Figure  4.  Raman spectrum of different catalysts

    图  5  不同催化剂的XPS图谱

    Figure  5.  XPS spectra of different catalysts

    图  6  不同催化剂的光电流响应图

    Figure  6.  Photocurrent response of different catalysts

    图  7  不同催化剂的紫外可见漫反射光谱图

    Figure  7.  Uv-vis diffuse reflection spectra of different catalysts

    图  8  不同催化剂的硝基苯光催化还原制苯胺的光催化活性

    Figure  8.  Photocatalytic activities of different catalysts for nitrobenzene reduction to aniline

    图  9  不同催化剂的对位取代基硝基苯光催化还原制苯胺活性图

    Figure  9.  Photocatalytic activities of different catalysts for reduction nitrobenzene with various p-substituents to anilines

    图  10  6次循环后3.3% Cu/TiO2的稳定性测试

    Figure  10.  Recycling test of 3.3% Cu/TiO2 after six cycles

    表  1  不同催化剂的物理结构参数

    Table  1.   Physical parameters of different catalysts

    催化剂比表面积/
    (m2·g−1)
    孔容/
    (cm3·g−1)
    孔径/
    nm
    晶粒尺寸/
    nm
    TiO2220.091622
    0.5% Cu/TiO2280.101422
    2% Cu/TO2280.111521
    3.3% Cu/TiO2470.262121
    4.1% Cu/TiO2390.242321
    5% Cu/TiO2390.232321
    下载: 导出CSV
  • [1] KUMAR S, SURENDAR T, KUMAR B, et al. Synthesis of magnetically separable and recyclable g-C3N4-Fe3O4 hybrid nanocomposites with enhanced photocatalytic performance under visible-light irradiation[J] . Journal of Physical Chemistry C,2013,49:26135 − 26143.
    [2] CORMA A, SERNA P. Chemoselective hydrogenation of nitro-compounds with supported gold catalysts[J] . Science,2006,313:332 − 334. doi: 10.1126/science.1128383
    [3] WU W, LIU G, XIE Q, et al. A simple and highly efficient route for the preparation of p-phenylenediamine by reducing 4-nitroaniline over commercial CdS visible light-driven photocatalyst in water[J] . Green Chemistry,2012,14:1705 − 1709. doi: 10.1039/c2gc35231a
    [4] 吴龙华, 孙佳怡, 雷金梅, 等. 掺铁二氧化钛类芬顿对染料废水的处理研究[J] . 科技风,2020,35:176 − 178.
    [5] YOO H, KIM J H. Photoactive TiO2/CuxO composite films for photocatalytic degradation of methylene blue pollutant molecules[J] . Advanced Powder Technology,2021,32(4):1287 − 1293. doi: 10.1016/j.apt.2021.02.031
    [6] LU X F, SUN W J, LI J, et al. Spectroscopic investigations on the simulated solar light induced photodegradation of 4-nitrophenol by using three novel copper (II) porphyrin-TiO2 photocatalysts[J] . Spectrochemical Acta Part A: Molecular & Biomolecular Spectroscopy,2013,111:161 − 168.
    [7] LEE J H, KIM T, KIM E R, et al. Microwave-assisted synthesis of various Cu2O/Cu/TiO2 and CuxS/TiO2 composite nanoparticles towards visible-light photocatalytic applications[J] . Materials Chemistry and Physics,2021,259:123986. doi: 10.1016/j.matchemphys.2020.123986
    [8] KUSIOR A, SYNOWIEC M, ZAKRZEWSKA K, et al. Surface-controlled photocatalysis and chemical sensing of TiO2, α-Fe2O3, and Cu2O nanocrystals[J] . Crystals,2019,9(3):163 − 214. doi: 10.3390/cryst9030163
    [9] LIU J, LI X M, HE J, et al. Combining the photocatalysis and absorption properties of core-shell Cu-BTC@TiO2 microspheres: Highly efficient desulfurization of thiophenic compounds from fuel[J] . Materials (Basel),2018,11(11):2209 − 2227. doi: 10.3390/ma11112209
    [10] BI F, EHSAN M F, LIU W, et al. Visible-light photocatalytic conversion of carbon dioxide into methane using Cu2O/TiO2 hollow nanospheres[J] . Chinese Journal of Chemistry,2013,33:112 − 118.
    [11] LI D F, WANG J G, XU F X, Et al. Mesoporous (001)-TiO2 nanocrystals with tailoring Ti3 + and surface oxygen vacancies for boosting photocatalytic selective conversion of aromatic alcohols[J] . Catalysis Science & Technology,2021,11(8):2939 − 2947.
    [12] YANG H G, ZENG H C. Preparation of hollow anatase TiO2 nanospheres via ostwald ripening[J] . Journal of Physical Chemistry B,2004,108:3492 − 3495. doi: 10.1021/jp0377782
    [13] XU F X, WANG J G, LI D F, et al. Mesoporous (101)-TiO2 nanocrystals with tailoring Ti3 + and surface oxygen vacancies for boosting photocatalytic hydrogenation of nitrobenzenes[J] . Catalysis Science & Technology,2021,11:5147 − 5157.
    [14] TIAN F, ZHANG Y P, ZHANG J, et al. Raman spectroscopy: A new approach to measure the percentage of anatase TiO2 exposed (001) facets[J] . The Journal Physical Chemistry C,2012,116:7515 − 7519. doi: 10.1021/jp301256h
    [15] HUANG C J, YE W Q, LIU Q W, et al. Dispersed Cu2O octahedrons on h-BN nanosheets for p-nitrophenol reduction[J] . ACS Applied Materials & Interfaces,2014,6(16):14469 − 14476.
    [16] KAUR R, PAL B. Cu nanostructures of various shapes and sizes as superior catalysts for nitro-aromatic reduction and co-catalyst for Cu/TiO2 photocatalysis[J] . Applied Catalysis A: General,2015,491:28 − 36. doi: 10.1016/j.apcata.2014.10.035
    [17] HU Y H. A highly efficient photocatalyst-hydrogenated black TiO2 for the photocatalytic splitting of water[J] . Angewandte Chemie International Edition,2012,51:12410 − 12412. doi: 10.1002/anie.201206375
    [18] BABU S G, VINOTH R, KUMAR D P, et al. Influence of electron storing, transferring and shuttling assets of reduced graphene oxide at the interfacial copper doped TiO2 p-n heterojunction for increased hydrogen production[J] . Nanoscale,2015,7(17):7849 − 7857. doi: 10.1039/C5NR00504C
    [19] WANG J G, LIANG H, ZHANG C, et al. Bi2WO6-x nanosheets with tunable Bi quantum dots and oxygen vacancies for photocatalytic selective oxidation of alcohols[J] . Applied Catalysis B: Environmental,2019,256:117874. doi: 10.1016/j.apcatb.2019.117874
    [20] WANG J G, RAO P H, AN W, et al. Boosting photocatalytic activity of Pd decorated TiO2 nanocrystal with exposed (001) facets for selective alcohol oxidations[J] . Applied Catalysis B: Environmental,2016,195:41 − 48.
    [21] GE Y H, LUO H, HUANG J R, et al. Visible-light-active TiO2 photocatalyst for efficient photodegradation of organic dyes[J] . Optical Materials,2021,115:111058. doi: 10.1016/j.optmat.2021.111058
    [22] CHEN X B, MAO S S. Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications[J] . Chemical Reviews,2007,107(7):2891 − 2959. doi: 10.1021/cr0500535
    [23] XU C, YANG F, DENG B J, et al. Ti3C2/TiO2 nanowires with excellent photocatalytic performance for selective oxidation of aromatic alcohols to aldehydes[J] . Journal of Catalysis,2019,383:1 − 12.
  • 加载中
图(10) / 表(1)
计量
  • 文章访问数:  217
  • HTML全文浏览量:  74
  • PDF下载量:  34
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-07-03
  • 刊出日期:  2023-12-30

目录

    /

    返回文章
    返回