Study on influence of pyramid baffle on PEMFC performance
-
摘要: 质子交换膜燃料电池(PEMFC)流道结构主要影响气体流动、扩散和电化学反应。通过建立金字塔状流道挡板的PEMFC三维模型并进行数值模拟,探讨不同金字塔状挡板比率和挡板数量对燃料电池传质特性和输出性能的影响。结果表明:在流道内增添金字塔状挡板与无挡板流道相比,最大可提高气体垂直速度分量93.7%,进而提升气体由流道向催化层的传输性能;在金字塔状挡板比率为0.25,挡板数量为1时,燃料电池净功率最高可达到0.107 W。此外,增大挡板比率和增多挡板数量均可持续提高传质性能,但流道压降同时也会有最大18.5%的上升,使得PEMFC输出性能下降。Abstract: The flow channel structure of a proton exchange membrane fuel cell (PEMFC) has a significant impact on gas flow, diffusion and electrochemical reaction. By building the proposed three-dimensional PEMFC model of a pyramid-shaped baffle and running numerical simulations, the effects of different pyramid baffle ratios and baffle numbers on mass transfer and output performance of fuel cells were investigated. The results show that incorporating a pyramid baffle into the flow path can increase the vertical velocity component of the gas by up to 93.7% when compared to a flow path without baffle, thereby improving gas transfer performance from the flow path to the catalytic layer. When the pyramid baffle ratio is 0.25 and the number of baffles is 1, the net power of the fuel cell can reach a maximum of 0.107 W. Furthermore, increasing the baffle ratio and number of baffles can continuously improve mass transfer performance, but the flow path pressure drop can increase by up to 18.5%, which will reduce PEMFC output performance.
-
Key words:
- proton exchange membrane fuel cell (PEMFC) /
- pyramid baffle /
- mass transfer /
- pressure drop /
- net power
-
表 1 PEMFC及挡板几何模型参数
Table 1. PEMFC and baffle geometric model parameters
参数 数值 / mm PEMFC长度 20 FC宽度 0.79 FC高度 1 GDL宽度 1.7 GDL高度 0.38 CL宽度 1.7 CL高度 0.05 PEM宽度 1.7 PEM高度 0.1 Wt 0.79 H 0.5 表 2 PEMFC模型边界条件
Table 2. Boundary conditions of PEMFC model
参数 数值 工作温度 / K 343.15 参考压力 1标准大气压 阳极参考电流密度 / (A•cm−2) 100 阴极参考电流密度 / (A•cm−2) 0.001 活性比表面积 / m−1 1 × 107 GDL孔隙率 0.4 GDL渗透率 / m2 1.18 × 10−11 GDL电导率 / (S•m−1) 220 CL孔隙率 0.3 CL渗透率 / m2 2.36 × 10−12 CL电导率 / (S•m−1) 220 PEM孔隙率 0.3 PEM电导率 / (S•m−1) 9.825 入口水的物质的量分数 0.037 入口氧气的物质的量分数 0.202 入口氢气的物质的量分数 0.963 氧气入口速度 / (m•s−1) 0.4 氢气入口速度 / (m•s−1) 0.1 -
[1] STEMPIEN J P, CHAN S H. Comparative study of fuel cell, battery and hybrid buses for renewable energy constrained areas[J] . Journal of Power Sources,2017,340:347 − 355. doi: 10.1016/j.jpowsour.2016.11.089 [2] 刘祥荣, 蒋宇, 张雪霞, 等. 质子交换膜燃料电池三维数值仿真研究综述[J] . 中国电机工程学报,2021,41(21):7352 − 7370. [3] 王珂, 张拴羊, 徐洪涛, 等. 基于神经元的PEMFC仿生流道性能模拟研究[J] . 太阳能学报,2022,43(6):454 − 459. doi: 10.19912/j.0254-0096.tynxb.2022-0571 [4] 刘英杰, 陈奔. 质子交换膜燃料电池流场强化传质研究进展[J] . 汽车工程,2021,43(6):799 − 807. [5] PERNG S W, WU H W, CHEN Y B, et al. Performance enhancement of a high temperature proton exchange membrane fuel cell by bottomed-baffles in bipolar-plate channels[J] . Applied Energy,2019,255:113815. [6] PERNG S W, WU H W. A three-dimensional numerical investigation of trapezoid baffles effect on non-isothermal reactant transport and cell net power in a PEMFC[J] . Applied Energy,2015,143:81 − 95. doi: 10.1016/j.apenergy.2014.12.059 [7] CHEN H, GUO H, YE F, et al. A numerical study of baffle height and location effects on mass transfer of proton exchange membrane fuel cells with orientated-type flow channels[J] . International Journal of Hydrogen Energy,2021,46(10):7528 − 7545. doi: 10.1016/j.ijhydene.2020.11.226 [8] WANG X, QIN Y, WU S, et al. Numerical and experimental investigation of baffle plate arrangement on proton exchange membrane fuel cell performance[J] . Journal of Power Sources,2020,457:228034. doi: 10.1016/j.jpowsour.2020.228034 [9] LI H W, LIU J N, YANG Y, et al. Research on mass transport characteristics and net power performance under different flow channel streamlined imitated water-drop block arrangements for proton exchange membrane fuel cell[J] . Energy,2022,251:123983. doi: 10.1016/j.energy.2022.123983 [10] CHEN H, GUO H, YE F, et al. An experimental study of cell performance and pressure drop of proton exchange membrane fuel cells with baffled flow channels[J] . Journal of Power Sources,2020,472:228456. doi: 10.1016/j.jpowsour.2020.228456 [11] YIN Y, WU S, QIN Y, et al. Quantitative analysis of trapezoid baffle block sloping angles on oxygen transport and performance of proton exchange membrane fuel cell[J] . Applied Energy,2020,271:115257. doi: 10.1016/j.apenergy.2020.115257 [12] 卫超强. 不同参数对质子交换膜燃料电池输出特性的影响[D]. 太原: 太原理工大学, 2021. [13] 喻强, 汪宏斌, 陈卓, 等. 相对湿度对PEMFC膜电极影响的数值模拟[J] . 太阳能学报,2021,42(12):343 − 348. doi: 10.19912/j.0254-0096.tynxb.2019-1429 [14] 陆佳斌, 申欣明, 陈明, 等. 阴极湿度与电流密度对PEMFC性能的协同影响[J] . 电源技术,2021,45(8):1018 − 1022. doi: 10.3969/j.issn.1002-087X.2021.08.016 [15] SEZGIN B, CAGLAYAN D G, DEVRIM Y, et al. Modeling and sensitivity analysis of high temperature PEM fuel cells by using Comsol Multiphysics[J] . International journal of hydrogen energy,2016,41(23):10001 − 10009. doi: 10.1016/j.ijhydene.2016.03.142