留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Fe-Ti二元系热力学评估比较

金宗啸 苏钰 李军 杨慧文

金宗啸, 苏钰, 李军, 杨慧文. Fe-Ti二元系热力学评估比较[J]. 上海工程技术大学学报, 2023, 37(3): 281-289. doi: 10.12299/jsues.22-0254
引用本文: 金宗啸, 苏钰, 李军, 杨慧文. Fe-Ti二元系热力学评估比较[J]. 上海工程技术大学学报, 2023, 37(3): 281-289. doi: 10.12299/jsues.22-0254
JIN Zongxiao, SU Yu, LI Jun, YANG Huiwen. Comparison of Fe-Ti binary system thermodynamic assessments[J]. Journal of Shanghai University of Engineering Science, 2023, 37(3): 281-289. doi: 10.12299/jsues.22-0254
Citation: JIN Zongxiao, SU Yu, LI Jun, YANG Huiwen. Comparison of Fe-Ti binary system thermodynamic assessments[J]. Journal of Shanghai University of Engineering Science, 2023, 37(3): 281-289. doi: 10.12299/jsues.22-0254

Fe-Ti二元系热力学评估比较

doi: 10.12299/jsues.22-0254
基金项目: 国家自然科学基金项目资助(51301105、51471105);上海市自然科学基金项目资助(20ZR1422200)
详细信息
    作者简介:

    金宗啸(1998−),男,在读硕士,研究方向为CALPHAD优化方法. E-mail:1727756490@qq.com

    通讯作者:

    苏 钰(1977−),女,副教授,博士,研究方向为材料计算与金属强韧性. E-mail:suyu@sues.edu.cn

  • 中图分类号: TG146.22

Comparison of Fe-Ti binary system thermodynamic assessments

  • 摘要: Fe-Ti二元系作为多组元Fe合金和多组元Ti合金的子系统,其热力学性质研究是将其拓展到多维应用的基础. 利用CALPHAD方法,选取近几十年来最具代表性的5篇Fe-Ti二元系评估研究论文,复现各评估研究的计算结果,比较不同评估对稳定相的热力学建模的相异性和对最终评估结果的影响,同时指出某些评估中存在的问题.
  • 图  1  1 873 K时,Fe-Ti二元系液相混合焓

    (a) Kumar等[2]、Dumitrescu等[4]、Wang等[9]、Thiedemann等[10]试验数据 (b) Bo等[6]、Kriegel等[8]、Wang等[9]、Thiedemann等[10]试验数据

    Figure  1.  Enthalpy of mixing in liquid phase at 1 873 K of Fe-Ti system

    图  2  1 873 K时,Fe-Ti二元系中Fe、Ti在液相中的活度

    (a) Kumar等[2]、Dumitrescu等[4]、Furukawa等[11]、Fruehan[12]试验数据 (b) Bo等[6]、Kriegel等[8]、Furukawa等[11]、Fruehan[12]试验数据

    Figure  2.  Activity of Fe and Ti in liquid phase at 1 873 K of Fe-Ti system

    图  3  文献中计算的生成焓

    Figure  3.  Calculated enthalpy of formation in the literatures

    图  4  Fe-Ti二元计算相图与试验数据对比图

    Figure  4.  Comparison of calculated value of Fe-Ti binary phase diagram with experimental data

    图  5  Fe-Ti二元系统中的富Ti侧平衡相图的试验数据

    Figure  5.  Experimental data of Ti-rich side phase diagram in Fe-Ti binary system

    图  6  Fe-Ti二元系统中的富Fe侧gamma-loop的试验数据

    Figure  6.  Experimental data of Gamma-loop at Fe-rich side in Fe-Ti binary system

    表  1  溶液相热力学参数计算值

    Table  1.   Calculated thermodynamic parameters of solution phase

    参数Kumar等[2]Jonsson[3]Dumitrescu等[4]Keyzer等[5]Bo等[6]
    LIQUID L0 $ -6\;758 + 9.809T $ $ -64\;457 $ $ -71\;374 + 8.25T $ $ -76\;247 + 17.845T $ $ -74\;300 + 17.839T $
    L1 $ -4\;731 $ $ 7\;434-4.5T $ $ 7\;900-6.069T $ $ 8\;299.849-6.101T $
    L2 $ 12\;155 + 0.25T $ $ 4\;345-2.844T $
    BCC_A2 L0 $ -579 + 14.954T $ $ -58\;134 + 6.887T $ $ -59\;098 + 11.5T $ $ -68\;488 + 23.825T $ $ -69\;241.924 + 25.246T + $
    $0.000\;1{T}^{2} + 120\;000{T}^{-1}$
    L1 $ -6\;059 $ $ -12\;879 + 6.828T $ $ -1\;769 + T $ $ 5\;467-5.083T $ $ 5\;018.986-4.992T $
    L2 $ 5\;602 + 3.5T $ $ 25\;262-15.83T $ $ 23\;028.241-13.110T $
    FCC_A1 L0 $ -5\;030 + 5.487T $ $ -50\;400 $ $ -51\;625 + 11T $ $ -56\;022 + 8.356T $ $ -52\;149.856 + 9.265T $
    L1 $ -1\;950-6T $ $ 4\;773-4.029T $ $ 4\;755.9-4.982T $
    L2 $ 14\;875 $ $ 30\;021-12.614T $ $ 29\;205.228-11.046T $
    HCP_A3 L0 $ 15\;132-8.668T $ $ -20\;019 + 23.08T $ $ -28\;750 + 11T $ $ -10\;000 + 15T $ $ -2\;500 + 35.004T $
    L1 $ -1\;700-6T $
    L2 $ 15\;000 $
    下载: 导出CSV

    表  2  FeTi相热力学参数计算值

    Table  2.   Calculated thermodynamic parameters of FeTi phase

    作者FeTi相描述形式热力学参数
    Kumar等[2] 化学计量化合物 $-53\;650 + 7.495T + {H}^{\mathrm{S}\mathrm{E}\mathrm{R} } + \displaystyle \sum { {}_{}{}^{0}G}^{\mathrm{S}\mathrm{E}\mathrm{R} }$
    Jonsson[3] 化学计量化合物 $-63\;646 + 243.681T-449\;929T{\rm{ln}}T-0.00\;843{T}^{2} + 102\;000{T}^{-1} + {H}^{\mathrm{S}\mathrm{E}\mathrm{R} }$
    Dumitrescu等[4] 化学计量化合物 $-90\;800 + 409T-73.5\;538T{\rm{ln}}T-0.01\;017{T}^{2} +$
    $ 124\;200{T}^{-1} + {H}^{\mathrm{S}\mathrm{E}\mathrm{R}} $
    Keyzer等[5] 双亚点阵模型

    ${G}_{\mathrm{F}\mathrm{e}:\mathrm{T}\mathrm{i} }^{}=76\;218-46.685T + 8.663T\rm{ln}T-0.007\;151{T}^{2} + 1.121\;169{\text{×} } {10}^{-6}{T}^{3}$
    $ {L}_{\mathrm{F}\mathrm{e},\mathrm{T}\mathrm{i}:\mathrm{F}\mathrm{e}}^{1}=-13\;764 $
    $ {L}_{\mathrm{F}\mathrm{e},\mathrm{T}\mathrm{i}:Ti}^{0}=-6\;097 $
    $ {L}_{\mathrm{F}\mathrm{e},\mathrm{T}\mathrm{i}:\mathrm{T}\mathrm{i}}^{1}=12\;256 $
    $ {\mathrm{T}\mathrm{C}}_{\mathrm{B}2}=-1\;325 $
    Bo等[6] 双亚点阵模型 $ -30\;028.003 + 4.495T $
    $ {L}_{\mathrm{F}\mathrm{e},\mathrm{T}\mathrm{i}:\mathrm{F}\mathrm{e}}=-5\;001.5 $
    $ {L}_{\mathrm{F}\mathrm{e},\mathrm{T}\mathrm{i}:\mathrm{T}\mathrm{i}}=11\;000 $
    下载: 导出CSV

    表  3  Fe2Ti相热力学参数计算值

    Table  3.   Calculated thermodynamic parameters of Fe2Ti phase

    作者热力学模型亚点阵点位热力学参数
    Kumar等[2]三亚点阵模型Fe:Ti:Fe$ -429\;782 + 120.875T $
    Fe:Fe:Fe$ 69\;869 $
    Va:Ti:Fe$-3\;556\;573 + 109.065T$
    Va:Fe:Fe$ 60\;724 $
    Josson[3]三亚点阵模型Fe:Fe:Fe$12{\text{×} }({}_{}{}^{0}{G}_{\mathrm{F}\mathrm{e} }^{} + 8\;426)$
    Fe:Ti:Fe$12{\text{×} }(-34\;938 + 137.773-24.517\;77T\mathrm{l}\mathrm{n}T$
    $-0.003\;39{T}^{2} + 41\;400{T}^{-1})$
    Fe:Fe:Ti$2{G}_{\mathrm{F}\mathrm{e}:\mathrm{T}\mathrm{i}:\mathrm{F}\mathrm{e} }^{ {\mathrm{F}\mathrm{e} }_{2}\mathrm{T}\mathrm{i} }-{G}_{\mathrm{F}\mathrm{e}:\mathrm{T}\mathrm{i}:\mathrm{T}\mathrm{i} }^{ {\mathrm{F}\mathrm{e} }_{2}\mathrm{T}\mathrm{i} } + 2.4{\text{×} }{10}^{6} + 46.105T$
    Fe:Ti:Ti$ 6{G}^{\mathrm{F}\mathrm{e}\mathrm{T}\mathrm{i}} + 28\;193 $
    Dumitrescu等[4]双亚点阵模型Fe:Fe$ 15\;000 $
    Ti:Fe$ 15\;000 $
    Fe:Ti$-90\;800 + 409T-73.553\;18-0.010\;17{T}^{2}$
    $ + 124\;200{T}^{-1} $
    Ti:Ti$ 15\;000 $
    Fe,Ti:Va$ -38\;000 $
    Va:Fe,Ti$ 16\;000 $
    Keyzer等[5]三亚点阵模型摩尔吉布斯自由能函数G$-78\;603 + 349.967\;5T-64.502T\mathrm{l}\mathrm{n}T$
    $-0.0241\;491{T}^{2} + 3.936\;825{\text{×} }10^{-6}{T}^{3} + 7\;620{T}^{-1}$
    Fe,Ti:Fe:Fe$ 3\;177 $
    Fe:Fe,Ti:Fe$ 18\;000 $
    Fe:Fe:Fe,Ti$ 6\;000 $
    Bo等[6]双亚点阵模型摩尔吉布斯自由能函数G$ -85\;500 + 410.041T-73.553T\mathrm{l}\mathrm{n}T $
    $-0.010\;17{T}^{2} + 124\;212.42{T}^{-1}$
    下载: 导出CSV

    表  4  Kriegel等[8]计算的压力相关参数

    Table  4.   Pressure-related parameter calculated by Kriegel等[8]

    $ {\beta }_{0} $$ {\beta }_{1} $$ {\beta }_{2}^{} $$ {\beta }_{3}^{} $$ {K}_{T}^{\text{'}} $
    FeTi$5.164 \;3{\text{×} }{10}^{12}$$9.329{\text{×} }{10}^{14}$$-12.781 \;5{\text{×} }{10}^{19}$$423.456{\text{×} }{10}^{23}$$ 3.1 $
    Fe2Ti$4.971 \;7{\text{×} }{10}^{12}$$5.245{\text{×} }{10}^{14}$$0.322 \;8{\text{×} }{10}^{19}$$1.237 \;8{\text{×} }{10}^{23}$$ 4 $
    下载: 导出CSV

    表  5  金属间相生成焓计算值与实验数据对比

    Table  5.   Comparation between calculated enthalpy of formation and experimental data in intermetallic phases

    x(Ti)温度/K生成焓 $\Delta H$/(kJ•mol−1)
    Kumar等[2]Jonsson[3]Dumitrescu等[4]试验值及来源
    FeTi$0.500$$ 1\;450 $$ -27.51 $$-31.691$$ -29.868 $$ -31.1 $,Gacchon等[13]
    FeTi$0.500$$ 1\;513 $$ -27.29 $$-31.639$$ -29.816 $$ -27.8 $,Dinsdale等[14]
    Fe2Ti$0.311$$ 1\;514 $$ -31.81 $$-31.510$$ -26.863 $$ -27.6 $,Gacchon等[13]
    Fe2Ti$0.330$$ 1\;413 $$ -34.52 $$-33.930$$ -29.273 $$ -25.4 $,Dinsdale等 [14]
    下载: 导出CSV

    表  6  Fe-Ti二元系中温度和摩尔分数计算值与试验测量值

    Table  6.   Calculated values and experimental measured value of temperature and mole fraction of Fe-Ti system

    平衡反应Kumar等[2]Jonsson[3]Dumitrescu等[4]Bo等[6]Kriegel等[8]试验[15]试验[16]试验[17]
    L$ \leftrightarrow $BCC_Fe + Fe2TiT=1 565.4 KT=1 564 KT=1 562 KT=1 559 K
    x(Ti)=0.26
    T=1 564.3 K
    x(Ti)=0.277
    T=1 562 KT=1 599 K
    xTi=0.25
    Cong.melt Fe2TiT=1 699.5 KT=1 704 KT=1 692.5 KT=1 706 K
    x(Ti)=0.329
    T=1 700.8 K
    x(Ti)=0.333
    T=1 700 KT=1 696 K
    FeTi$ \leftrightarrow $Fe2Ti + LT=1 589.5 KT=1 593 KT=1 612 KT=1 592 K
    x(Ti)=0.492
    T=1 588.4 K
    x(Ti)=0.356
    T=1 590 KT=1 589 K
    x(Ti)=0.37
    L$ \leftrightarrow $FeTi + BCC_TiT=1 351 KT=1 346 KT=1 355 KT=1 352 K
    x(Ti)=0.77
    T=1 356.5 K
    x(Ti)=0.774
    T=1 353 K
    x(Ti)=0.78
    BCC_Ti$ \leftrightarrow $FeTi + HCP_TiT=840.65 KT=859 KT=856.4 KT=856 K
    x(Ti)=0.9 995
    T=864.8 K
    T=848 K
    x(Ti)>0.99
    下载: 导出CSV
  • [1] KAUFMAN L, NESOR H. Coupled phase diagrams and thermochemical data for transition metal binary systems — I[J] . Calphad,1978,2(1):55 − 80. doi: 10.1016/0364-5916(78)90005-6
    [2] KUMAR K C H, WOLLAIITS P, DELAEY L. Thermodynamic reassessment and calculation of Fe-Ti phase diagram[J] . Calphad,1994,18(2):223 − 234. doi: 10.1016/0364-5916(94)90028-0
    [3] JONSSON S. Assessment of the Fe-Ti system[J] . Metallurgical and Materials Transactions B,1998,29(2):361 − 370. doi: 10.1007/s11663-998-0113-z
    [4] DUMITRESCU L F S, HILLERT M, SOUNDERS N. Comparison of Fe-Ti assessments[J] . Journal of Phase Equilibria,1998,19(5):441 − 448. doi: 10.1361/105497198770341923
    [5] De KEYZER J, CACCIAMANI G, DUPIN N, et al. Thermodynamic modeling and optimization of the Fe–Ni–Ti system[J] . Calphad,2009,33(1):109 − 123. doi: 10.1016/j.calphad.2008.10.003
    [6] BO H, WANG J, DUARTE L, et al. Thermodynamic re-assessment of Fe–Ti binary system[J] . Transactions of Nonferrous Metals Society of China,2012,22(9):2204 − 2211. doi: 10.1016/S1003-6326(11)61450-7
    [7] GRIMVALL G. Thermophysical Properties of Materials[M]. Elsevier, 1999. https://doi.org/10.1016/B978-044482794-4/50007-3.
    [8] KRIEGEL M J, WETZEL M H, FABRICHNAYA O, et al. Binary Ti–Fe system. Part II: Modelling of pressure-dependent phase stabilities[J] . Calphad,2022,76:102383. doi: 10.1016/j.calphad.2021.102383
    [9] WANG H, LÜCK R, PREDEL B. Calorimetric determination of the enthalpy of mixing of liquid iron-titanium alloys[J] . Zeitschrift fuer Metallkunde,1991,82(8):659 − 665.
    [10] THIEDEMANN U, QIN J, SCHAEFERS K, et al. Mixing enthalpy measurements of liquid Fe-Ti alloys by levitation alloying calorimetry and calculation of the thermodynamic properties of mixing.[J] . ISIJ International,1995,35(12):1518 − 1522. doi: 10.2355/isijinternational.35.1518
    [11] FURUKAWA T, KATO E. Thermodynamics of binary liquid iron-titanium alloys by mass spectrometry[J] . Transactions of the Iron and Steel Institute of Japan,1976,16(7):382 − 387. doi: 10.2355/isijinternational1966.16.382
    [12] FRUEHAN R J. Activities in liquid Fe-AI-O and Fe-Ti-O alloys[J] . Metallurgical Transactions,1970,1:3403 − 3410.
    [13] GACHON J C, NOTIN M, HERTZ J. The enthalphy of mixing of the intermediate phases in the systems FeTi, CoTi, and NiTi by direct reaction calorimetry[J] . Thermochimica Acta,1981,48(1/2):155 − 164. doi: 10.1016/0040-6031(81)87031-1
    [14] DINSDALE A T, CHART T G, PUTLAND F H. Enthalpies of formation of binary phases in the Fe-Ni system[R]. National Physical Laboratory: Middlesex, 1985.
    [15] MURRAY J L. The Fe−Ti (iron-titanium) system[J] . Bulletin of Alloy Phase Diagrams,1981,2(3):320 − 334. doi: 10.1007/BF02868286
    [16] BOOKER P H. Ternary phase equilibria in the systems Ti-Fe-C, Ti-Co-C and Ti-Ni-c : Phase equilibria of the type metal carbonitride + graphite + nitrogen in the systems Ti-C-N, Zr-C-N, and Hf-C-N[EB/OL]. 1979.
    [17] VANTHYNE R J, KESSLER H D, HANSEN M. The systems titanium-chromium and titanium-iron[J] . Transactions of the American Society for Metals,1952,44:974 − 989.
    [18] HELLAWELL A. The constitution of manganese base alloys with metals of the second transition series[J] . Journal of the Less Common Metals,1959,1(5):343 − 347. doi: 10.1016/0022-5088(59)90036-0
    [19] MCQUILLAN A D. The application of hydrogen equilibriumpressure measurements to the investigation of titanium alloy systems[J] . Journal of the Japan Institute of Metals,1951(79):73 − 88.
    [20] MURAKAMI Y, KIMURA H, NISHIMURA Y. An investigation on the titanium-iron-carbon system (1st report). on the titanium-iron system[J] . Journal of the Japan Institute of Metals,1957,21(11):665 − 669.
    [21] KO M, NISHIZAWA T. Effect of magnetic transition on the solubility of alloying elements in alpha iron[J] . Journal of the Japan Institute of Metals,1979,43(2):118 − 126.
    [22] QIU C, JIN Z P. An experimental study and themodynamic evaluation of the Fe-Ti-W system at 1 000°C[J] . Scripta Metallurgica et Materialia,1993,28(1):85 − 90. doi: 10.1016/0956-716X(93)90542-Z
    [23] RAUB E, RAUB C J, RÖSCHEL E, et al. The α-Ti-Fe solid solution and its superconducting properties[J] . Journal of the Less Common Metals,1967,12(1):36 − 40. doi: 10.1016/0022-5088(67)90066-5
    [24] MATYKA J, FAUDOT F, BIGOT J. Study of iron solubility in α titanium[J] . Scripta Metallurgica,1979,13(7):645 − 648. doi: 10.1016/0036-9748(79)90126-1
    [25] BALESIUS A, GONSER U. Precision phase analysis[J] . Journal de Physique: Colloque,1976,37:C6 − 397.
    [26] STUPEL M M, BAMBERGER M, RON M. The solubility of iron in α-titanium in the temperature range 360~580 °C[J] . Journal of the Less Common Metals,1986,123(1/2):1 − 7. doi: 10.1016/0022-5088(86)90109-8
    [27] MOLL S, OGILVIE R. Solubility and diffusion of titanium in iron[J] . Transactions of AIME,1959,215:613 − 618.
    [28] FISCHER W, LORENTZ K, FABRITIUS H, et al. Investigation of phase transformations in iron alloys using a magnetic balance[J] . Arch Eisenhüttenwes,1966,37:78 − 87.
    [29] DUMITRESCU L, HILLERT M. Reassessment of the solubility of TiC and TiN in Fe[J] . Isij International,1999,39:84 − 90. doi: 10.2355/isijinternational.39.84
    [30] FENG Q, DUAN B, MAO L, et al. Thermodynamic assessment of Ti-Al-Fe-V quaternary system applied to novel titanium alloys designing[J] . Metals,2022,12(3):444. doi: 10.3390/met12030444
    [31] ZHANG G, ZHENG W, ZHAO Z, et al. Thermodynamic modeling of the Fe-Mn-Ti system[J] . Journal of Phase Equilibria and Diffusion,2021,42(3):363 − 372. doi: 10.1007/s11669-021-00889-7
    [32] WITUSIEWICZ V T, BONDAR A, HECHT U, et al. Experimental study and thermodynamic re-modelling of the constituent binaries and ternary B–Fe–Ti system[J] . Journal of Alloys and Compounds,2019,800:419 − 449. doi: 10.1016/j.jallcom.2019.05.341
    [33] HU T, ZENG Y, HUANG X M, et al. Experimental investigation of phase relationship in Ti–Fe-Hf ternary system[J] . Calphad,2019,67:101669. doi: 10.1016/j.calphad.2019.101669
    [34] CHEN Y, CHENG L, TANG B. Binary diffusion behaviour in Ti– X (X = Al, Mo, V, Cr, Fe) alloys[J] . International Journal of Materials Research,2018,109(6):569 − 572. doi: 10.3139/146.111642
    [35] LU X G, Selleby M, Sundman B. Implementation of a new model for pressure dependence of condensed phases in Thermo-Calc[J] . Calphad,2005,29(1):49 − 55. doi: 10.1016/j.calphad.2005.04.001
  • 加载中
图(6) / 表(6)
计量
  • 文章访问数:  269
  • HTML全文浏览量:  114
  • PDF下载量:  34
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-19
  • 刊出日期:  2023-09-30

目录

    /

    返回文章
    返回