Investigations on extrusion gear of feed mechanism of fused deposition 3D printer
-
摘要: 送丝装置作为熔融沉积成型(FDM) 3D打印机的核心部件之一,负责将打印耗材送入喷嘴,并完成打印. 挤出轮是整个送丝装置的关键零件,整机工作时,挤出轮与打印耗材直接接触,依靠摩擦将打印耗材送入喷嘴. 通过试验方式,研究挤出轮的齿形和齿数,对打印过程进给量以及打印件的质量进行分析. 结果表明,斜齿挤出轮的挤出效率高于直齿和凹形齿,但在高速情况下会发生跳齿现象. 在工作时,挤出轮的齿数越多,实际进给量越接近理论值.Abstract: As one of the core components of the fused deposition 3D printer, the feed mechanism is responsible for feeding the filaments into the nozzle and completing the printing. The extrusion gear is the key part of the entire feed mechanism. When the whole machine is working, the extrusion gear is in direct contact with the filaments, and the filaments are fed into the nozzle by friction. The tooth shape and number of teeth of the extrusion gears are studied by means of experiments, and the feed rate in the printing process and the quality of the printed parts are mainly analyzed. The results show that the extrusion efficiency of the helical extrusion gear is higher than that of the straight and concave teeth, but the phenomenon of tooth skipping occurs at a high speed. When working, the more teeth of the extrusion gear, the closer the actual feed is to the theoretical value.
-
Key words:
- feed mechanism /
- fused deposition modeling (FDM) /
- extrusion gear /
- feed volume
-
表 1 挤出轮步进值
Table 1. Extrusion gear step value
挤出轮 直径/mm 步长/mm−1 a~c 11 92.599 d 10 101.859 e 8 127.324 f 11.6 87.810 表 2 打印参数设置
Table 2. Printing parameter settings
工艺参数 参数值 喷嘴直径/ mm 0.4 喷嘴温度/ ℃ 215 层高/ mm 0.2 打印速度/ (mm•s−1) 40 热床温度/ ℃ 55 打印材料 PLA + 材料密度/ (g•cm−3) 1.25 表 3 相同打印参数下各挤出轮的测试模型打印件质量
Table 3. Test model print quality of each extrusion gear under the same printing parameters
挤出轮 理论值/g 实测值/g 平均值/g 误差率/% 模型1 模型2 模型3 a 2.04 1.82 1.77 1.77 1.787 12.42 b 2.04 1.84 1.84 1.82 1.833 10.13 c 2.04 1.83 1.81 1.82 1.820 10.78 d 2.04 1.81 1.80 1.80 1.803 11.60 f 2.04 1.88 1.89 1.84 1.870 8.33 表 4 挤出速度为5 mm/s时,各挤出轮的理论进给量和测量进给量
Table 4. Theoretical and measured feeds of each extrusion gears when the extrusion speed is 5 mm/s
理论值/mm 挤出轮a 挤出轮b 挤出轮c 挤出轮d 挤出轮f 测量值/mm 误差率/% 测量值/mm 误差率/% 测量值/mm 误差率/% 测量值/mm 误差率/% 测量值/mm 误差率/% 5 4.86 2.80 4.91 1.80 4.91 1.80 4.86 2.80 4.89 2.20 10 9.82 1.80 9.86 1.40 9.81 1.90 9.84 1.60 9.90 1.00 15 14.78 1.47 14.85 1.00 14.75 1.67 14.76 1.60 14.78 1.47 20 19.74 1.30 19.76 1.20 19.81 0.95 19.68 1.60 19.77 1.15 25 24.67 1.32 24.70 1.20 24.74 1.04 24.62 2.48 24.66 1.36 30 29.63 1.23 29.58 1.40 29.64 1.20 29.41 2.03 29.87 0.43 -
[1] 卢秉恒. 增材制造技术: 现状与未来[J] . 中国机械工程,2020,31(1):19 − 23. doi: 10.3969/j.issn.1004-132X.2020.01.003 [2] FU Y, DOWNEY A, YUAN L, et al. In situ monitoring for fused filament fabrication process: A review[J] . Additive Manufacturing,2021,38:101749. doi: 10.1016/j.addma.2020.101749 [3] ALSOUFI M S, ELSAYED A. Warping deformation of desktop 3D printed parts manufactured by open source fused deposition modeling (FDM) system[J] . International Journal of Mechanical & Mechatronics Engineering,2017,17(11):7 − 16. [4] SCOTT J, GUPTA N, WEMBER C, et al. Additive manufacturing: Status and opportunities [R]. Washington: Science and Technology Policy Institute, 2012. [5] 王琛. 3D打印快速成型计算机切片处理误差分析[J] . 软件,2021,42(4):87 − 89. doi: 10.3969/j.issn.1003-6970.2021.04.027 [6] 赵延国, 柳传鑫, 许淙博, 等. 3D打印技术及设备发展现状[J] . 机械研究与应用,2021,34(3):224 − 227. doi: 10.16576/j.cnki.1007-4414.2021.03.067 [7] DUDEK P. FDM 3D printing technology in manufacturing composite elements[J] . Archives of metallurgy and materials,2013,58(4):1415 − 1418. doi: 10.2478/amm-2013-0186 [8] WU P, WANG J, WANG X. A critical review of the use of 3-D printing in the construction industry[J] . Automation in Construction,2016,68:21 − 31. doi: 10.1016/j.autcon.2016.04.005 [9] 余少华. 一种FDM的3D扫描打印装置送料机构: CN203876233U[P]. 2014− 10− 15. [10] 马志刚, 王会良. 熔融沉积3D打印机的送丝机构优化设计[J] . 现代信息科技,2019,3(24):160 − 162, 164. doi: 10.3969/j.issn.2096-4706.2019.24.059 [11] 迟耀东, 王进峰. 熔融沉积快速成型送丝机构的研究与设计[J] . 现代制造工程,2017(6):69 − 72, 98. doi: 10.16731/j.cnki.1671-3133.2017.06.012 [12] FIEDLER M. Evaluating tension and tooth geometry to optimize grip on 3D printer filament[J] . 3D Printing and Additive Manufacturing,2015,2(2):85 − 88. doi: 10.1089/3dp.2015.0011 [13] HU Q, DUAN Y, ZHANG H, et al. Manufacturing and 3D printing of continuous carbon fiber prepreg filament[J] . Journal of materials science,2018,53(3):1887 − 1898. doi: 10.1007/s10853-017-1624-2 [14] TAKAHASHI H, MIYASHITA H. Expressive fused deposition modeling by controlling extruder height and extrusion amount[C]//Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems. Denver Colorado: SIGCHI, 2017: 5065−5074. [15] GREEFF G P, SCHILLING M. Closed loop control of slippage during filament transport in molten material extrusion[J] . Additive Manufacturing,2017,14:31 − 38. doi: 10.1016/j.addma.2016.12.005 [16] TLEGENOV Y, WONG Y S, HONG G S. A dynamic model for nozzle clog monitoring in fused deposition modelling[J] . Rapid Prototyping Journal,2017,23(2):391 − 400. doi: 10.1108/RPJ-04-2016-0054 [17] ABILGAZIYEV A, KULZHAN T, RAISSOV N, et al. Design and development of multi-nozzle extrusion system for 3D printer[C]//Proceedings of 2015 International Conference on Informatics, Electronics & Vision (ICIEV). Fukuoka: IEEE, 2015: 1−5. [18] NIENHAUS V, SPIEHL D, DORSAM E. Investigations on roller-based filament drives[J] . Journal of Manufacturing and Materials Processing,2021,5(2):53. doi: 10.3390/jmmp5020053