留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

熔融沉积3D打印机送丝机构挤出轮的研究

郭根清 王克用

郭根清, 王克用. 熔融沉积3D打印机送丝机构挤出轮的研究[J]. 上海工程技术大学学报, 2023, 37(4): 404-408. doi: 10.12299/jsues.22-0287
引用本文: 郭根清, 王克用. 熔融沉积3D打印机送丝机构挤出轮的研究[J]. 上海工程技术大学学报, 2023, 37(4): 404-408. doi: 10.12299/jsues.22-0287
GUO Genqing, WANG Keyong. Investigations on extrusion gear of feed mechanism of fused deposition 3D printer[J]. Journal of Shanghai University of Engineering Science, 2023, 37(4): 404-408. doi: 10.12299/jsues.22-0287
Citation: GUO Genqing, WANG Keyong. Investigations on extrusion gear of feed mechanism of fused deposition 3D printer[J]. Journal of Shanghai University of Engineering Science, 2023, 37(4): 404-408. doi: 10.12299/jsues.22-0287

熔融沉积3D打印机送丝机构挤出轮的研究

doi: 10.12299/jsues.22-0287
详细信息
    作者简介:

    郭根清(1997−),男,硕士,研究方向为3D打印. E-mail:genqing_guo@126.com

    通讯作者:

    王克用(1975−),男,副教授,博士,研究方向为高性能有限元和3D打印协同系统. E-mail:keyong_wang@126.com

  • 中图分类号: TH164

Investigations on extrusion gear of feed mechanism of fused deposition 3D printer

  • 摘要: 送丝装置作为熔融沉积成型(FDM) 3D打印机的核心部件之一,负责将打印耗材送入喷嘴,并完成打印. 挤出轮是整个送丝装置的关键零件,整机工作时,挤出轮与打印耗材直接接触,依靠摩擦将打印耗材送入喷嘴. 通过试验方式,研究挤出轮的齿形和齿数,对打印过程进给量以及打印件的质量进行分析. 结果表明,斜齿挤出轮的挤出效率高于直齿和凹形齿,但在高速情况下会发生跳齿现象. 在工作时,挤出轮的齿数越多,实际进给量越接近理论值.
  • 图  1  耗材挤出原理图

    Figure  1.  Schematic diagram of consumable extrusion

    图  2  挤出轮齿数

    Figure  2.  Teeth numbers of extrusion gear

    图  3  挤出轮齿形

    Figure  3.  Tooth profiles of extrusion gear

    图  4  测试模型

    Figure  4.  Test model

    表  1  挤出轮步进值

    Table  1.   Extrusion gear step value

    挤出轮直径/mm步长/mm−1
    a~c1192.599
    d10101.859
    e8127.324
    f11.687.810
    下载: 导出CSV

    表  2  打印参数设置

    Table  2.   Printing parameter settings

    工艺参数参数值
    喷嘴直径/ mm0.4
    喷嘴温度/ ℃215
    层高/ mm0.2
    打印速度/ (mm•s−1)40
    热床温度/ ℃55
    打印材料PLA +
    材料密度/ (g•cm−3)1.25
    下载: 导出CSV

    表  3  相同打印参数下各挤出轮的测试模型打印件质量

    Table  3.   Test model print quality of each extrusion gear under the same printing parameters

    挤出轮理论值/g实测值/g平均值/g误差率/%
    模型1模型2模型3
    a2.041.821.771.771.78712.42
    b2.041.841.841.821.83310.13
    c2.041.831.811.821.82010.78
    d2.041.811.801.801.80311.60
    f2.041.881.891.841.8708.33
    下载: 导出CSV

    表  4  挤出速度为5 mm/s时,各挤出轮的理论进给量和测量进给量

    Table  4.   Theoretical and measured feeds of each extrusion gears when the extrusion speed is 5 mm/s

    理论值/mm挤出轮a 挤出轮b 挤出轮c 挤出轮d 挤出轮f
    测量值/mm误差率/%测量值/mm误差率/%测量值/mm误差率/%测量值/mm误差率/%测量值/mm误差率/%
    5 4.86 2.80 4.91 1.80 4.91 1.80 4.86 2.80 4.89 2.20
    10 9.82 1.80 9.86 1.40 9.81 1.90 9.84 1.60 9.90 1.00
    15 14.78 1.47 14.85 1.00 14.75 1.67 14.76 1.60 14.78 1.47
    20 19.74 1.30 19.76 1.20 19.81 0.95 19.68 1.60 19.77 1.15
    25 24.67 1.32 24.70 1.20 24.74 1.04 24.62 2.48 24.66 1.36
    30 29.63 1.23 29.58 1.40 29.64 1.20 29.41 2.03 29.87 0.43
    下载: 导出CSV
  • [1] 卢秉恒. 增材制造技术: 现状与未来[J] . 中国机械工程,2020,31(1):19 − 23. doi: 10.3969/j.issn.1004-132X.2020.01.003
    [2] FU Y, DOWNEY A, YUAN L, et al. In situ monitoring for fused filament fabrication process: A review[J] . Additive Manufacturing,2021,38:101749. doi: 10.1016/j.addma.2020.101749
    [3] ALSOUFI M S, ELSAYED A. Warping deformation of desktop 3D printed parts manufactured by open source fused deposition modeling (FDM) system[J] . International Journal of Mechanical & Mechatronics Engineering,2017,17(11):7 − 16.
    [4] SCOTT J, GUPTA N, WEMBER C, et al. Additive manufacturing: Status and opportunities [R]. Washington: Science and Technology Policy Institute, 2012.
    [5] 王琛. 3D打印快速成型计算机切片处理误差分析[J] . 软件,2021,42(4):87 − 89. doi: 10.3969/j.issn.1003-6970.2021.04.027
    [6] 赵延国, 柳传鑫, 许淙博, 等. 3D打印技术及设备发展现状[J] . 机械研究与应用,2021,34(3):224 − 227. doi: 10.16576/j.cnki.1007-4414.2021.03.067
    [7] DUDEK P. FDM 3D printing technology in manufacturing composite elements[J] . Archives of metallurgy and materials,2013,58(4):1415 − 1418. doi: 10.2478/amm-2013-0186
    [8] WU P, WANG J, WANG X. A critical review of the use of 3-D printing in the construction industry[J] . Automation in Construction,2016,68:21 − 31. doi: 10.1016/j.autcon.2016.04.005
    [9] 余少华. 一种FDM的3D扫描打印装置送料机构: CN203876233U[P]. 2014− 10− 15.
    [10] 马志刚, 王会良. 熔融沉积3D打印机的送丝机构优化设计[J] . 现代信息科技,2019,3(24):160 − 162, 164. doi: 10.3969/j.issn.2096-4706.2019.24.059
    [11] 迟耀东, 王进峰. 熔融沉积快速成型送丝机构的研究与设计[J] . 现代制造工程,2017(6):69 − 72, 98. doi: 10.16731/j.cnki.1671-3133.2017.06.012
    [12] FIEDLER M. Evaluating tension and tooth geometry to optimize grip on 3D printer filament[J] . 3D Printing and Additive Manufacturing,2015,2(2):85 − 88. doi: 10.1089/3dp.2015.0011
    [13] HU Q, DUAN Y, ZHANG H, et al. Manufacturing and 3D printing of continuous carbon fiber prepreg filament[J] . Journal of materials science,2018,53(3):1887 − 1898. doi: 10.1007/s10853-017-1624-2
    [14] TAKAHASHI H, MIYASHITA H. Expressive fused deposition modeling by controlling extruder height and extrusion amount[C]//Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems. Denver Colorado: SIGCHI, 2017: 5065−5074.
    [15] GREEFF G P, SCHILLING M. Closed loop control of slippage during filament transport in molten material extrusion[J] . Additive Manufacturing,2017,14:31 − 38. doi: 10.1016/j.addma.2016.12.005
    [16] TLEGENOV Y, WONG Y S, HONG G S. A dynamic model for nozzle clog monitoring in fused deposition modelling[J] . Rapid Prototyping Journal,2017,23(2):391 − 400. doi: 10.1108/RPJ-04-2016-0054
    [17] ABILGAZIYEV A, KULZHAN T, RAISSOV N, et al. Design and development of multi-nozzle extrusion system for 3D printer[C]//Proceedings of 2015 International Conference on Informatics, Electronics & Vision (ICIEV). Fukuoka: IEEE, 2015: 1−5.
    [18] NIENHAUS V, SPIEHL D, DORSAM E. Investigations on roller-based filament drives[J] . Journal of Manufacturing and Materials Processing,2021,5(2):53. doi: 10.3390/jmmp5020053
  • 加载中
图(4) / 表(4)
计量
  • 文章访问数:  237
  • HTML全文浏览量:  82
  • PDF下载量:  22
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-26
  • 刊出日期:  2023-12-30

目录

    /

    返回文章
    返回