留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于NiFe2O4/BaTiO3复合摩擦材料的输出性能

严熠萌 李彬 齐宝亮 陈俊 焦元静

严熠萌, 李彬, 齐宝亮, 陈俊, 焦元静. 基于NiFe2O4/BaTiO3复合摩擦材料的输出性能[J]. 上海工程技术大学学报, 2023, 37(4): 359-362. doi: 10.12299/jsues.22-0329
引用本文: 严熠萌, 李彬, 齐宝亮, 陈俊, 焦元静. 基于NiFe2O4/BaTiO3复合摩擦材料的输出性能[J]. 上海工程技术大学学报, 2023, 37(4): 359-362. doi: 10.12299/jsues.22-0329
YAN Yimeng, LI Bin, QI Baoliang, CHEN Jun, JIAO Yuanjing. Output performance of composite tribo-materials based on NiFe2O4/BaTiO3[J]. Journal of Shanghai University of Engineering Science, 2023, 37(4): 359-362. doi: 10.12299/jsues.22-0329
Citation: YAN Yimeng, LI Bin, QI Baoliang, CHEN Jun, JIAO Yuanjing. Output performance of composite tribo-materials based on NiFe2O4/BaTiO3[J]. Journal of Shanghai University of Engineering Science, 2023, 37(4): 359-362. doi: 10.12299/jsues.22-0329

基于NiFe2O4/BaTiO3复合摩擦材料的输出性能

doi: 10.12299/jsues.22-0329
基金项目: 上海工程技术大学大学生创新训练项目资助(CX2105004);上海市III类高峰学科—材料科学与工程(高能束智能加工与绿色制造)
详细信息
    作者简介:

    严熠萌(2002−),男,在读本科,研究方向为摩擦纳米发电机. E-mail:1437319613@qq.com

    通讯作者:

    李 彬(1982−),男,讲师,博士,研究方向为微连接/铁电材料. E-mail:libin@sues.edu.cn

  • 中图分类号: TB332

Output performance of composite tribo-materials based on NiFe2O4/BaTiO3

  • 摘要: 摩擦材料是摩擦纳米发电机(TENG)的关键部件之一. 将NiFe2O4/BaTiO3纳米颗粒填充到聚二甲基硅氧烷(Polydimethylsiloxane, PDMS)中,研究两种无机材料作为填料对发电机输出性能的影响,以获得具有更高输出性能的柔性摩擦纳米发电机. 研究发现,NiFe2O4与BaTiO3陶瓷颗粒均为多晶结构且结晶良好,两种纳米颗粒均能有效增强PDMS的电输出值,尤其NiFe2O4/BaTiO3/PDMS复合膜的输出电压明显高于PDMS膜,且质量比为7.5∶2.5∶90的NiFe2O4/BaTiO3/PDMS复合膜具有最高的输出电压值.
  • 图  1  NiFe2O4与BaTiO3粉末的XRD图谱

    Figure  1.  XRD patterns of NiFe2O4 and BaTiO3 powders

    图  2  NiFe2O4粉末的磁滞回线

    Figure  2.  Magnetic hysteresis loops of NiFe2O4 powder

    图  3  BaTiO3粉末的漏电流曲线

    Figure  3.  Leakage currents of BaTiO3 powder

    图  4  NiFe2O4粉末、BaTiO3粉末及NiFe2O4/BaTiO3/PDMS复合膜的照片

    Figure  4.  Photographs of NiFe2O4 powder, BaTiO3 powder and NiFe2O4/BaTiO3/PDMS composite film

    图  5  接触−分开型摩擦纳米发电机的工作机理示意图

    Figure  5.  Schematic illustration of working mechanism of a contact-separation triboelectric nanogenerator

    图  6  不同质量比的NiFe2O4/BaTiO3/PDMS复合膜的输出电压

    Figure  6.  Output voltages of NiFe2O4/BaTiO3/PDMS composite films with different weight ratios

  • [1] SHI X L, CHEN W Y, ZHANG T, et al. Fiber-based thermoelectrics for solid, portable, and wearable electronics[J] . Energy & Environmental Science,2021,14(2):729 − 764.
    [2] IM J S, PARK I K. Mechanically robust magnetic Fe3O4 nanoparticle/polyvinylidene fluoride composite nanofiber and its application in a triboelectric nanogenerator[J] . ACS Applied Materials & Interfaces,2018,10(30):25660 − 25665.
    [3] GUO Y B, LI K R, HOU C Y, et al. Fluoroalkylsilane-modified textile-based personal energy management device for multifunctional wearable applications[J] . ACS Applied Materials & Interfaces,2016,8(7):4676 − 4683.
    [4] CAO Y L, GUO Y B, CHEN Z X, et al. Highly sensitive self-powered pressure and strain sensor based on crumpled MXene film for wireless human motion detection[J] . Nano Energy,2022,92:106689. doi: 10.1016/j.nanoen.2021.106689
    [5] METI S, SAGAR H P, RAHMAN M R, et al. Assessment of triboelectricity in colossal-surface-area-lanthanum oxide nanocrystals synthesized via low-temperature hydrothermal process[J] . Journal of Materials Science: Materials in Electronics,2021,32(15):20351 − 20361. doi: 10.1007/s10854-021-06545-7
    [6] GUO Y B, CHEN Z X, YANG W F, et al. Multifunctional mechanical sensing electronic device based on triboelectric anisotropic crumpled nanofibrous mats[J] . ACS Applied Materials & Interfaces,2021,13(46):55481 − 55488.
    [7] ZHANG S N, XU J M, YU J B, et al. An all-rubber-based woven nanogenerator with improved triboelectric effect for highly efficient energy harvesting[J] . Materials Letters,2021,287:129271. doi: 10.1016/j.matlet.2020.129271
    [8] CHEN Z X, CAO Y L, YANG W F, et al. Embedding in-plane aligned MOF nanoflakes in silk fibroin for highly enhanced output performance of triboelectric nanogenerators[J] . Journal of Materials Chemistry A,2022,10(2):799 − 807. doi: 10.1039/D1TA08605G
    [9] LIU J D, YU D, ZHENG Z P, et al. Lead-free BiFeO3 film on glass fiber fabric: Wearable hybrid piezoelectric-triboelectric nanogenerator[J] . Ceramics International,2021,47(3):3573 − 3579. doi: 10.1016/j.ceramint.2020.09.205
    [10] MANCHI P, GRAHAM S A, DUDEM B, et al. Improved performance of nanogenerator via synergetic piezo/triboelectric effects of lithium niobate microparticles embedded composite films[J] . Composites Science and Technology,2021,201:108540. doi: 10.1016/j.compscitech.2020.108540
    [11] GUO Y B, CHEN Z X, WANG H Z, et al. Progress of inorganic filler based composite films for triboelectric nanogenerators[J] . Journal of Inorganic Materials,2021,36(9):919 − 928. doi: 10.15541/jim20200742
    [12] ZHANG J H, HAO X H. Enhancing output performances and output retention rates of triboelectric nanogenerators via a design of composite inner-layers with coupling effect and self-assembled outer-layers with superhydrophobicity[J] . Nano Energy,2020,76:105074. doi: 10.1016/j.nanoen.2020.105074
    [13] GUO Y B, CAO Y L, CHEN Z X, et al. Fluorinated metal-organic framework as bifunctional filler toward highly improving output performance of triboelectric nanogenerators[J] . Nano Energy,2020,70:104517. doi: 10.1016/j.nanoen.2020.104517
    [14] DUDEM B, BHARAT L K, PATNAM H, et al. Enhancing the output performance of hybrid nanogenerators based on Al-doped BaTiO3 composite films: a self-powered utility system for portable electronics[J] . Journal of Materials Chemistry A,2018,6(33):16101 − 16110. doi: 10.1039/C8TA04612C
    [15] SEUNG W, YOON H J, KIM T Y, et al. Boosting power-generating performance of triboelectric nanogenerators via artificial control of ferroelectric polarization and dielectric properties[J] . Advanced Energy Materials,2017,7(2):1600988. doi: 10.1002/aenm.201600988
  • 加载中
图(6)
计量
  • 文章访问数:  191
  • HTML全文浏览量:  71
  • PDF下载量:  30
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-07
  • 刊出日期:  2023-12-30

目录

    /

    返回文章
    返回